中文字幕av资源在线观看,亚洲天堂日韩88,亚洲天堂久久激情,成人在线观看超碰,国产亚洲精品成人av丝袜,中文字幕人妻熟女色爱,久久中文字幕人妻16,亚洲天堂午夜精品,欧美激情亚洲av

歡迎來到北京中航時代儀器設備有限公司網(wǎng)站!
咨詢電話:13699145010
article技術文章
首頁 > 技術文章 > 介質的電氣強度與擊穿電壓

介質的電氣強度與擊穿電壓

更新時間:2024-07-18      點擊次數(shù):8878

介質的電氣強度

對于擊穿的實驗現(xiàn)象和規(guī)律,用上一節(jié)所介紹的氣體放電的發(fā)展過程可以解釋,但是由于氣體放電理論還不完善,因此并不能對擊穿電壓進行精確的計算。所以在實際的工程 式應用中,比較普遍的是通過參照一些典型電極的擊穿電壓來選擇絕緣距離,或者根據(jù)實際電極布置情況,通過實驗來確定擊穿電壓。

空氣間隙放電電壓主要受到電場情況、電壓形式以及大氣條件的影響。本節(jié)主要討論在不同條件下空氣間隙放電電壓的一些規(guī)律。



1.2作用電壓下的擊穿

氣體間隙的擊穿電壓與外施電壓的種類有關。直流與工頻電壓均為持續(xù)作用的電壓,這類電壓隨時間的變化率很小,在放電發(fā)展所需的時間范圍內(以微秒)可以認為外施電壓沒什么變化,因此統(tǒng)稱為穩(wěn)態(tài)電壓,以區(qū)別于作用時間很短的雷電沖擊電壓(模擬大氣過電壓)和操作沖擊電壓(模擬操作過電壓)。而沖擊電壓(雷電沖擊、操作沖)則持續(xù)時間極短,以微秒計,放電發(fā)展所需的時間不能忽略,間隙的擊穿因而也具有新的特點,電場不均勻時,尤為明顯。

1.均勻電場中擊穿

實際工程中很少見到比較大的均勻電場間隙,因為這種情況下為消除電極邊緣效應,電極的尺寸必須做得很大。因此,對于均勻場間隙,通常只有間隙長度不大時的擊穿數(shù)據(jù),如圖1-14所示。

img1 

均勻電場中電極布置對稱,因此無擊穿的極性效應。均勻場間隙中各處電場強度相等,擊穿所需時間極短,因此其直流擊穿電壓與工頻擊穿電壓峰值以及50%沖擊擊穿電壓(指多次施加沖擊電壓時,其50%導致擊穿電壓),實際上是相同的,且擊穿電壓的分散性很小。對于1-14所示的擊穿電壓()實驗曲線,可用以下經(jīng)驗公式表示為

img2 

  d間隙距(cm)

δ空氣相對密度。

從圖1-14中可以大致看出,當d1~10cm范圍內時,擊穿強度Eb(電壓峰值表)約等于30kV/cm。

2. 稍不均勻電場的擊穿

稍不均勻電場的擊穿特點是擊穿前無電暈,極性效應不很明顯,直流擊穿電壓、工頻擊穿電壓峰值及 50%沖擊擊穿電壓乎一致。然而,稍不均勻電場的擊穿電壓與電場均勻程f關系極大,因而既沒有能夠概括各種電極結構的統(tǒng)一經(jīng)驗公式,也沒有適用于各種電極形狀的統(tǒng)一實驗數(shù)據(jù)。通常是對一些典型的電極結構做出一批實驗數(shù)據(jù),實際的電極結構可能復雜得多,只能從典型電極中選取類似的結構進行估算。

稍不均勻電場的擊穿電壓通??梢愿鶕?jù)起始場強經(jīng)驗公式進行估算,由

img3 

可得

img4 

f取決于電極布置,可用靜電場計算的方法或電解槽實驗的方法求得。1-15給出了幾種典型電極結構。

img5 

對于稍不均勻電場,當Emax達到臨界場E0時,達到擊穿電壓U0,從而

img6 

下面給出幾種典型電極結構的電暈起始場強E、電極表面最大場Emax電場不均勻系數(shù)f以及電暈起始電壓U0(f<2的稍不均勻間隙,電暈起始電壓也就等于間隙擊穿電壓)的經(jīng)驗計算公式:

-平板電極為

img7 

img8 

img9 

img10 

-平板電極

img11 

img12 

img13 

img14 

平行圓柱-圓柱電極為

img15 

img16 

img17 

img18 

同軸圓柱電極為

img19 

img20 

img21 

img22 

同心球電極為

img23 

img24 

img25 

img26 

-球電極

img27 

img28 

img29 

img30 

式中,E0、Emax單位kV/cm()UC單位kV();rR、d的含義如1-15所示,單位均cm

另外,對于某些不便于根據(jù)經(jīng)驗公式求的電場結構,也可以用E0=30kV/cm進行大致估算,則間隙擊穿電壓Ud

                          Ud=30d/f                     1-63

3.極不均勻電場的擊穿

極不均勻場擊穿電壓的特點:電場不均勻程度對擊穿電壓的影響減弱(由于電場已經(jīng)極不均),極間距離對擊穿電壓的影響增大。

這個結果有很大意義,可以選擇電場極不均勻的情況,棒-板和-棒作為典型電極結(-板和-尖電極結)。它們的擊穿電壓具有代表性,當在工程上遇到很多極不均勻的電場時,可以根據(jù)這些典型電極的擊穿電壓數(shù)據(jù)來做估算。如果電場分布不對稱,則可參照-(-)電極的數(shù)據(jù);如果電場分布對稱,則可參照-(-)電極的數(shù)據(jù)。

在直流電壓中,極不均勻場中直流擊穿電壓的極性效應非常明顯。同樣間隙距離下,不同極性間,擊穿電壓相差一倍以上。而尖-尖電極的擊穿電壓介于兩種極性-板電極的擊穿電壓之間,這是因為這種電場有兩個強場區(qū),同等間隙距離下,電場均勻程度較-板電極為好。

而在工頻電壓下的擊穿,無論是棒-棒電極還是-板電極,其擊穿都發(fā)生在正半周峰值附(-板電極結構,擊穿發(fā)生在棒電極處于正半周峰值附),故擊穿電壓與直流的正極性相近。工頻擊穿電壓的分散性不大,相對標準偏差σ一般不超2%。當間隙距離太大時,擊穿電壓基本上與間隙距離呈線性上升的關系;當間隙距離很大時,平均擊穿場強明顯降低,即擊穿電壓不再隨間隙距離的加大而線性增加,呈現(xiàn)出飽和現(xiàn)象,這一現(xiàn)象對棒板間隙尤為明顯。

因此,在電氣設備上,希望盡量采用棒棒類對稱型的電極結構,而避免棒-板類不對稱的電極結構。由于試驗時所采用""不盡相同,不同實驗室的實驗曲線會有所不同。這一點在各種電壓的空氣間隙擊穿特性中都存在,使用這些曲線時應注意其試驗條件。

在持續(xù)作用電壓下,電極間距離遠小于相應電磁波的波長,所以任一瞬間的這種電場都可以近似作為靜電場來考慮。除在很少數(shù)情況下可以直接求得解析解外,要想了解局部或整體電場分布的詳細情況,主要依靠電場數(shù)值計算來求解,應用較多的方法主要有有限元法和模擬電荷法。有限元法在計算封閉場域的電場方面有許多優(yōu)點,而模擬電荷法在計算開放場域的電場方面應用較多。

1.2.2 雷電沖擊作用下的擊穿

大氣中雷電產生的過電壓對高壓電氣設備絕緣會產生重大威脅。因此,在電力系統(tǒng)中一方面應采取措施限制大氣過電壓,另一方面應保證高壓電氣設備能耐受一定水平的雷電過電壓。雷電過電壓是一種持續(xù)時間極短的脈沖電壓,在這種電壓作用下絕緣擊穿具有與穩(wěn)態(tài)電壓擊穿不同的特點。

1.雷電沖擊電壓的標準波形

雷電能對地面設備造成危害的主要是云地閃。按雷電發(fā)展的方向可分為下行雷和上行雷兩種。下行雷是在雷云中產生并向大地發(fā)展,上行雷則是由接地物體頂部激發(fā),并向雷云方向發(fā)展。雷電的極性是按照從雷云流入大地的電荷符號決定。實驗表明,不論地質情況如何,90%左右的雷電是負極性雷。

下行的負極性雷通??煞譃?/span>3個主要階段,即先導、主放電和余光。先導過程延續(xù)約幾毫秒,以逐級發(fā)展、高電導、高溫的、具有高電位的先導通道將雷云到大地之間的氣隙擊穿。沿先導通道分布著電荷,其數(shù)量達幾庫侖。當下行先導和大地短接時,發(fā)生先導通道放電的過渡過程,稱為主放電過程。在主放電過程中,通道產生突發(fā)的亮光,發(fā)出巨大的聲響,沿著雷電通道流過幅值很大、延續(xù)時間為近百微秒的沖擊電流。正是這個主放電過程造成雷電放電最大的破壞作用。主放電完成后,云中的剩余電荷沿著雷電通道繼續(xù)流向大地,這時在展開照片上看到的是一片模糊發(fā)光的部分,稱為余光放電,相應的電流是逐漸衰減的,約為103101A,延續(xù)時間約為幾毫秒。上3個階段組成下行雷的第一個分量。通常,雷電放電并不就此結束,而是隨后還有幾(甚至十幾)后續(xù)分量。每個后續(xù)分量也是階段和金光放電階段組成。各分量的最大電流和電流增長最大陡度是造成被擊物體上的過電壓、電動力、電磁脈沖和爆破力的主要因素。而在余光階段中,流過較長時間的電流則是造成雷電熱效應的重要因素。

由雷云放電引起的大氣過電壓的波形是隨機的,但在實驗室中用沖擊電壓發(fā)生器產生沖擊電壓來模擬雷電過電壓時必須采用標準波形,這樣可以使不同實驗室的試驗結果互相比較。圖1-16表示雷電沖擊電壓的標準波形和確定其波前和波長時間的方(波長指沖擊波衰減至半峰值的時)。

img31 

1-16,O為原點P點為波峰,但在波形圖中這兩點都不易確定,因為波形O點處往往模糊不清;P點處波形很平,難以確定其出現(xiàn)時間。國際上都用圖示的方法求得名義零O1,(即圖中虛線所),連0.9倍峰值點0.3倍峰值點作虛線交橫軸O1點,這樣波前時T1和波長時T2O1算起。對于操作沖擊波T1T2都從真實原點算起,這是因為操作波上升比較平緩,原點附近的波形可以看得清楚。

目前,國際上大多數(shù)國家對于標準雷電波的波形規(guī)定是:

T1=1.2(1±30%)μsT2=50(1±20%)μs

對于不同極性的標準雷電波形可表示為+1.2/50μs-1.2/50μs。

2.放電時延

每個氣隙都有它的低靜態(tài)擊穿電壓,即長時間作用在間隙上能使間隙擊穿的低電壓。要使氣體間隙擊穿,不僅需要外施電壓高于臨界擊穿電壓U0,而且還需要外施電壓維持一定的時間,以保證放電發(fā)展過程的完成。

img32 

1-17表示沖擊擊穿所需要的時間。施加沖擊電壓經(jīng)時間t0電壓U0,但此時間隙不會擊穿。t0至間隙擊穿所需的時間t1稱為放電時延,它包括兩部分時間,即tstf。ts表示從外電壓U0的時刻起,到氣隙中出現(xiàn)第一個有效電子的時間,稱之為統(tǒng)計時延(因為第一個有效自由電子的出現(xiàn)服從統(tǒng)計規(guī)律)。tf表示從出現(xiàn)第一個有效自由電子的時刻起,到放電過程完成所需的時間,也就是電子崩的形成和發(fā)展到流注所需的時間,稱為放電形成時延。所以,圖1-17中沖擊擊穿所需的總時tb

                       tb=t0+ ts+ tf                            (1-64)

短間隙中,尤其當電場較均勻的時候,放電形成時延比統(tǒng)計時延小得多,因此這種情況下放電時延主要決定于統(tǒng)計時延。為了減小統(tǒng)計時延,可以采用紫外線或其他高能射線對間隙進行人工照射,使陰極表面釋放出更多電子。例如,用較小的球隙測量沖擊電壓時,通常需要采取這種措施。較長的間隙中,主要決定于放電形成時延,且電場越不均勻,則放電形成時延越長。顯然,對間隙施加高于擊穿所需的低電壓,可以使統(tǒng)計時延和放電形成時延都縮短。

3. 50%擊穿電壓

由于放電時延服從統(tǒng)計規(guī)律,因此沖擊擊穿電壓具有一定的分散性。一般的規(guī)律是,放電時延越長,則沖擊擊穿電壓的分散性越大,即電場越不均勻或間隙越長,則沖擊擊穿電壓的分散性越大,也就是說,低概率擊穿電壓100%擊穿電壓的差別越大。從確定間隙耐受沖擊電壓絕緣能力來看,希望在實驗中求取低概率擊穿電壓Ub0(Ub0可看作是絕緣的沖擊耐受電壓),但這通常是很難準確求得的。國內外實踐大多是求50%放電電壓,即多次能加電壓50%概率會導致間隙擊穿或不擊穿。根據(jù)50%沖擊擊穿電壓(Ub0)和標準偏差σ即可估算Ub0值。

                            Ub0= Ub50-3σ                            (1-65)

一般來說,50%沖擊擊穿電壓比工頻擊穿電壓的峰值要高一些,這是由于雷電沖擊電壓作用時間短的緣故。同一間隙50%沖擊擊穿電壓Ub50與穩(wěn)態(tài)擊穿電壓Ub0之比,稱為沖擊系數(shù)β。

img33 

均勻電場和稍不均勻電場間隙的放電時延短,擊穿的分散性小,沖擊擊穿通常發(fā)生在波峰附近,所以這種情況下沖擊系數(shù)接近于1。極不均勻電場間隙的放電時延長,沖擊擊穿常發(fā)生在波尾部分,這種情況下沖擊系數(shù)大1

4.伏秒特 

由于放電時延的影響,氣隙擊穿需要一定的時間才能完成,對于不是持續(xù)作用而是脈沖性質的電壓,氣隙的擊穿電壓就與該電壓作用的時間有很大關系。同一個氣隙,在峰值較低但延續(xù)時間較長的沖擊電壓作用下可能被擊穿,而在峰值較高但延續(xù)時間較短的沖擊電壓作用下可能反而不被擊穿。因此,在沖擊電壓下僅用單一的擊穿電壓值描述間隙的絕緣特性是不全面的。一般用間隙上出現(xiàn)的電壓最大值和間隙擊穿時間的關系曲線來表示間隙的沖擊絕緣特性,此曲線稱間隙的伏秒特性曲線。

img34 

伏秒特性繪制方法如圖1-18所示。保持一定的波形而逐級升高沖擊電壓的峰值。電壓較低時,擊穿發(fā)生在波尾。在擊穿前的瞬時,電壓雖已從峰值下降到一定數(shù)值,但該電壓峰值仍然是氣隙擊穿過程中的主要因素,因此以該電壓峰值為縱坐標,以擊穿時刻為橫坐標,得1"2"。電壓再升高時,擊穿可能正好發(fā)生在波峰,則該點當然是伏秒特性曲線上的一點。電壓進一步升高時,氣隙很可能在電壓尚未升到波形的峰值時就已經(jīng)被擊穿,如圖中的3"。把這些相應的點連成一條曲線,就是該氣隙在該電壓波形下的伏秒特性曲線。 

由于放電時間具有分散性,所以在每級電壓下可得到一系列放電時間。實際上,伏秒特性是以上、下包線為界的一個帶狀區(qū)域。工程上還采用所謂50%秒特性,或稱平均伏秒特性。每級電壓下,放電時間小于下包線橫坐標所示數(shù)值的概率為0,大于上包線橫坐標所示數(shù)值的概率為100%?,F(xiàn)于上下限間選一個數(shù)值,使放電時間小于該值的概率等于50%,即某個電壓下多次擊穿中放電時間小于該值者恰占一半,這個數(shù)值可稱為50%概率放電時間。50%概率放電時間為橫坐標,縱坐標仍為該電壓值,連成曲線就50%伏秒特性曲線,如1-19所示。同理,上下包線可相應地稱100%0伏秒特性曲線。較多地采用的50%伏秒特性,它從較少次的實驗中就可得到。 但應用它時應注意,它只是大致地反映了該間隙的伏秒特性,在其兩側還有一定的分散范圍。

img35 

1.2.3操作沖擊電壓下空氣的絕緣特性

電力系統(tǒng)在操作或發(fā)生事故時,因狀態(tài)發(fā)生突然變化引起電感和電容回路的振蕩產生過電壓,稱為操作過電壓。操作過電壓幅值與波形顯然跟電力系統(tǒng)的參數(shù)有密切關系,這一點與雷電過電壓不同,后者一般取決于接地電阻,與系統(tǒng)電壓等級無關。操作過電壓則不然,由于其過渡過程的振蕩基值即是系統(tǒng)運行電壓,因此電壓等級越高,操作過電壓的幅值也越高。在不同的振蕩過程中,振蕩幅值最高可達最大相電壓峰值的34倍。因此,為保證安全運行,需要對高壓電氣設備絕緣考察其耐受操作過電壓的能力。早期的工程實踐中,采用工頻電壓試驗來考驗絕緣耐受操作過電壓的能力。但其后的研究表明,長間隙在操作沖擊波作用下的擊穿電壓比工頻擊穿電壓低。因此目前的試驗標準規(guī)定,對額定電壓300kV以上的高壓電氣設備要進行操作沖擊電壓試驗。這說明操作沖擊電壓下的擊穿只對長間隙才有重要意義。

1.操作沖擊電壓波形

操作過電壓波形隨著電壓等級、系統(tǒng)參數(shù)、設備性能、操作性質、操作時機等因素而有很大變化的。IEC推薦250/2500μs的操作沖擊電壓標準波形,我國國家標準也采用了這個標準波形。如1-20所示,圖0點為實際零點u電壓值,圖u=1.0處為電壓u峰值。波形特征參數(shù);波前時Tcr=250μs,允許誤差±20%;半峰值時T2=2500μs,允許誤差±60%;峰值允許誤±3%90%峰值以上持續(xù)時Td未作規(guī)定。

img36 

2.操作沖擊放電電壓的特點

(1)U形曲線

通常采用與雷電沖擊波相似的非周期性指數(shù)衰減波來模擬頻率為數(shù)千赫茲的操作過電壓。研究表明,長空氣間隙的操作沖擊擊穿通常發(fā)生在波前部分,因而其擊穿電壓與波前時間有關,而與波尾時間無關。

1-21表示空氣3m-(一極接地)和導線-板間隙的平均擊穿場強與操作沖擊波的波前時間的關系。由此可見,雷電沖擊擊穿場強高于工頻擊穿場強,但操作沖擊波作用下,當波前時tcr100300μs時,擊穿場強出現(xiàn)極小值,其值比工頻擊穿場強要低。進步的研究還表明,出現(xiàn)擊穿場強極小值的波前時間隨間隙距離的增加而增大。對于操作沖擊電壓作用下長間隙擊穿U形曲",通常是用放電時延和空間電荷的形成與遷移這兩種作用相反的影響因素來解釋的。Ebtcr的減小而增大,是放電時延在起作用,這一點與雷電沖擊電壓下的伏秒特性是相似的。U形曲線極小值右邊,Ebtcr的增加而增大,是因為電壓作用時間增加后空間電荷遷移的范圍擴大,更好地改善了間隙整個電場分布,從而使擊穿電壓提高。

img37 

(2)極性效應

在各種不同的電場結構中,正極性操作沖擊的50%擊穿電壓都比負極性的低,所以是更危險的。在討論操作沖擊電壓下的間隙擊穿特性時,若無特別說明,一般均指正極性的情況。還有一點值得注意的是,在同極性的雷電沖擊標準波作用下,-板間隙的擊穿電壓-棒間隙的擊穿電壓低得不多,而在操作過電壓作用下,前者卻比后者低得多,這個情況啟示我們在設計高壓電力裝置時,應注意盡量避免出現(xiàn)-板型氣隙。

(3)飽和現(xiàn)象

與工頻擊穿電壓的規(guī)律性類似,長間隙在操作波電壓作用下也呈現(xiàn)出顯著的飽和現(xiàn)象,特別是棒-板型氣隙,其飽和程度更加突出。這是因為長間隙下先導形成之后,放電更易發(fā)展。而雷電沖擊時,作用時間太短,所以雷電的飽和現(xiàn)象很不明顯,放電電壓與氣隙距離一般呈線性關系。

(4)分散性大

在操作沖擊電壓作用下,間隙的50%擊穿電壓的分散性比雷電沖擊下大得多,集中電(如棒)比伸長電(如導)要大。波前時間較長(比如,大1000μs)比波前時間較短(100~300μs)要大。對-板間隙,50%擊穿電壓的相對標準偏差前者8%左右,波前時間較短時5%。而雷電沖擊電壓下,分散性小得多,σ3%;工頻下分散性更小,不超2%。

(5)鄰近效應

電場分布對操作沖擊電壓U50%影響很大,接地物體靠近放電間隙會顯著降低正極性擊穿電壓(但能多少提高一些負極性擊穿電壓),稱鄰近效應。

U50%擊穿電壓極小值經(jīng)驗公式:正-板空氣間隙操作沖擊電壓U形曲線50%放電電壓極小U50%,min與間隙距d的關系可用如下經(jīng)驗公式表示為

img38 

由實驗結果,對于120m的長間隙,此公式能很好地吻合。

1.2.4大氣條件對氣體擊穿的影響

大氣中間隙的放電電壓隨空氣密度的增大而提高,這是因為空氣密度增大時,電子的平均自由行程縮短,使電離過程削弱的緣故。而對于空氣濕度來說,在極不均勻電場中,空氣中的水分能使間隙的擊穿電壓有所提高,這是因為水分子具有弱電負性,容易吸附電子使其形成負離子的緣故。但濕度對均勻電場間隙擊穿的影響很小,因為均勻場間隙在擊穿前各處的場強都很高,即各處電子運動速度都很高,不易被水分子捕獲而形成負離子。所以,在均勻場或稍不均勻場間隙中,通常對濕度的影響可忽略不計。本節(jié)中討論濕度對放電的影響是指空氣中水汽分子的影響,當空氣的相對濕度很高而在固體絕緣表面發(fā)生凝露時,情況就不同了。這種情況下電場分布會發(fā)生畸變,因而導致氣隙擊穿電壓或沿固體絕緣表面的閃絡電壓下降。

1. 濕度校正因數(shù)和空氣密度校正因數(shù)

根據(jù)我國國家標準,在不同大氣狀態(tài)下,外絕緣的放電電壓可按如下公式校正: 

img39 

  US標準大氣狀態(tài)(氣壓0.1013MPa,溫度20,絕對濕度11g/cm2)絕緣放電電壓

U實際大氣狀態(tài)下外絕緣放電電壓

Kd空氣密度校正因數(shù);

Kh濕度校正因數(shù)。

顯然,大氣狀態(tài)不同時,外絕緣試驗電壓也應該按照式(1-68)換算。空氣密度校正因數(shù)Kd

img40 

  P試驗條件下的氣(Pa);

t-試驗條件下的氣(); 

Psts標準狀態(tài)下的氣壓和氣溫。

濕度校正因數(shù)Kh 

img41 

式中k絕對濕度的函數(shù),根據(jù)外施形式不同而采用圖1-22中曲1或者曲2。

img42 

而式(1-69)與式1-70)中的m、nw取決于電壓的形式、極性和放電距d。目前標準中假m=n,即

img43 

式中δ——空氣相對密度。

2.海拔的影響

隨著海拔的增加,大氣壓力下降,空氣密度減小,導致外絕緣放電電壓也隨之下降。

海拔對外絕緣放電電壓的影響一般也由經(jīng)驗公式估計。根據(jù)我國國家標準GB/T110222020《高壓交流開關設備和控制設備標準的共同技術要求》規(guī)定,對用于海4000m1000m以上的設備外絕緣以及干式變壓器絕緣,在非高海拔地區(qū)試驗時,其試驗電壓U應為標準狀態(tài)下試驗電壓Us乘以海拔校正系數(shù)KA

img44 

式中 H安裝地點海拔。

為簡單起見,取下述確定值:m=1,對于工頻、雷電沖擊和相間操作沖擊電壓;m=0.9,對于縱絕緣操作沖擊電壓m=0.75,對于相對地操作沖擊電壓。

以上公式還比較簡單,對于一些較復雜的,比如相同海拔、不同地區(qū)間大氣狀態(tài)以及不同濕度下的大氣狀態(tài)沒有比較好地解決,對于海拔對外絕緣放電電壓的影響,仍在繼續(xù)研究中。

1.2.5提高氣體擊穿電壓的措施

提高氣體擊穿電壓不外乎兩個途徑:一方面是改善電場分布,使之盡量均勻;另一方面是利用其他方法來削弱氣體中的電離過程。改善電場分布也有兩種途徑:一種是改進電極形狀;另一種是利用氣體放電本身的空間電荷畸變電場的作用。

1.電極形狀的改進

均勻電場和稍不均勻電場間隙的平均擊穿場強比極不均勻電場間隙的要高很多。一般來說,電場分布越均勻,平均擊穿場強也越高。因此,可以通過改進電極形狀、增大電極曲率半徑,以改善電場分布,提高間隙的擊穿電壓。同時,電極表面應盡量避免毛刺、棱角等以消除電場局部增強的現(xiàn)象。若不可避免出現(xiàn)極不均勻電場,則盡可能采用對稱電場(-棒類)。即使是極不均勻電場,不少情況下,為了避免在工作電壓下出現(xiàn)強烈電暈放電,也必須增大電極曲率半徑。

改變電極形狀以調整電場的方法有:

1)增大電極曲率半徑。如變壓器套管端部加球形屏蔽罩,采用擴徑導(截面積相同,半徑增)等,用增大電極曲率半徑的方法來減小表面場強。

2)改善電極邊緣。電極邊緣做成弧形,或盡量使其與某等位面相近,以消除邊緣效應。

3)使電極有最佳外形。如穿墻高壓引線上加金屬扁球,墻洞邊緣做成近似垂鏈線旋轉體,以此改善其電場分布。

2.空間電荷對原電場的畸變作用

極不均勻電場中間隙被擊穿前先發(fā)生電暈現(xiàn)象,所以在一定條件下,可以利用放電自身產生的空間電荷來改善電場分布,以提高擊穿電壓。例如,導線與平板間隙中,當導線直徑減小到一定程度后,間隙的工頻擊穿電壓反而顯著提高。

當導線直徑很小時,導線周圍容易形成比較均勻的電暈層,電壓增加,電暈層也逐漸擴大,電暈放電所形成的空間電荷使電場分布改變。由于電暈層比較均勻,電場分布改善了,從而提高了擊穿電壓。當導線直徑較大時,情況就不同了。電極表面不可能絕對光滑,總存在電場局部強的地方,從而總存在電離局部強的現(xiàn)象。此外,由于導線直徑較大,導線表面附近的強場區(qū)也較大,電離一經(jīng)發(fā)展,就比較強烈。局部電離的發(fā)展,將顯著加強電離區(qū)前方的電場,而削弱了周圍附近的電場(類似于出現(xiàn)了金屬),從而使該電離區(qū)進一步發(fā)展。這樣,電暈就容易轉入刷狀放電,從而其擊穿電壓就和尖-板間隙的擊穿電壓相近了。只有在一定間隙距離范圍內才存在上"效應。間隙距離超過一定值時,細線也將產生刷狀放電,從而破壞比較均勻的電暈層,此后擊穿電壓也同-板間隙的擊穿電壓相近了。

實驗表明,雷電沖擊電壓下沒有細線效應。這是由于電壓作用時間太短,來不及形成充分的空間電荷層的緣故。利用空間電荷(均勻的電暈)提高間隙的擊穿電壓,僅在持續(xù)作用電壓下才有效,而且此時在擊穿前將出現(xiàn)持續(xù)的電暈現(xiàn)象,這在很多場合下也是不允許的。

3.極不均勻場中屏障的采用

在極不均勻場的空氣間隙中,放入薄片固體絕緣材料(如紙或紙),在一定條件下可以顯著地提高間隙的擊穿電壓。屏降的作用在于屏障表面上積聚的空間電荷,使屏障與板電極之間形成比較均勻的電場,從而使整個間隙的擊穿電壓提高。

工頻電壓下,在-板電極中設置屏障可以顯著地提高擊穿電壓,因為工頻電壓擊穿總是發(fā)生在尖電極為正極性的半周內。雷電沖擊電壓下,屏障也可提高·板同隙的擊穿電壓,但是幅度比穩(wěn)態(tài)電壓下要小一些。

4.提高氣體壓力的作用

提高間隙擊穿電壓的另一個途徑是采取其他方法削弱氣體中的電離過程,比如,在設備內絕緣等有條件的情況下提高氣體壓力。由于大氣壓下空氣的電氣強度30kV/cm,即使采取上述措施,盡可能改善電場分布,其平均擊穿場強最高也不會超過這個數(shù)值。而提高氣體壓力可以減小電子的平均自由行程,削弱電離過程,從而提高擊穿電壓。

在采取這種措施時,必須注意電場均勻程度和電極表面狀態(tài)。當間隙距離不變時,擊穿電壓隨壓力的提高而很快增加;但當壓力增加到一定程度后,擊穿電壓增加的幅度逐漸減小,說明此后繼續(xù)增加壓力的效果逐漸下降了。在高氣壓下,電場的均勻程度對擊穿電壓的影響比在大氣壓力下要顯著得多,電場均勻程度下降,擊穿電壓將急劇降低。因此,采用高氣壓的電氣設備應使電場盡可能均勻。而在實際工程中采用的高氣壓值也不會太大。因為氣壓太高時,擊穿電壓隨氣壓升高的規(guī)律將不符合巴申定律,壓力越高,二者分歧越大。而且同一δd條件下,壓力越高,擊穿電壓越低。另外壓力太高,工程制造成本也會大幅度增加。

在高氣壓下,氣隙的擊穿電壓和電極表面的粗糙度也有很大關系。電極表面越粗糙,氣隙的擊穿電壓就越低,氣體壓力越大,這個影響就越顯著。一個新的電極最初幾次的擊穿電壓往往較低,經(jīng)過多次限制能量的火花擊穿后,氣隙的擊穿電壓就有顯著提高,分散性也減小,這個過程稱作對電極進"處理。氣壓提高,"處理所需的擊穿次數(shù)也越多。電極表面不潔、有污物以及濕度等因素在高氣壓下對氣隙擊穿電壓的影響都要比常壓下顯著。如果電場不均勻,濕度使擊穿電壓下降的程度就更顯著。

因此,高氣壓下應盡可能改進電極形狀,以改善電場分布。在比較均勻的電場中,電極應仔細加工光潔。氣體要過濾,濾去塵埃和水分。充氣后需放置較長時間凈化后再使用。

5.高真空和高電氣強度SF6的采用

(1)高真空的采用

采用高真空也是削弱了電極間氣體的電離過程,雖然電子的自由行程變得很大,但間隙高間隙擊穿電壓大。

間隙距離較小時,高真空的擊穿場強很高,其值超過壓縮氣體間隙;但間隙距離較大時,擊穿場強急劇減小,明顯低于壓縮氣體間隙的擊穿場強。真空擊穿理論對這一現(xiàn)象是這樣解釋的:高真空小間隙的擊穿是與陰極表面的強場發(fā)射密切有關。由于強場發(fā)射造成很大的電流密度,導致電極局部過熱使電極發(fā)生金屬汽化并釋放出氣體,破壞了真空,從而引起擊穿。間隙距離較大時,擊穿是由所謂全電壓效應引起的。隨著間隙距離及擊穿電壓的增大,電子從陰極到陽極經(jīng)過巨大的電位差,積聚了很大的動能,高能電子轟擊陽極時能使陽極釋放出正離子及輻射出光子;正離子及光子到達陰極后又將加強陰極的表面電離。在此反復過程中產生越來越大的電子流,使電極局部汽化,導致間隙擊穿,這就是全電壓效應引起平均擊穿場強隨間隙距離的增加而降低的原因。由此可見,真空間隙的擊穿電壓與電極材料、電極表面粗糙度和清潔度(包括吸附氣體的多少和種)等多種因素有關,因此擊穿分散性很大。在相同的實驗條件下,擊穿電壓隨電極材料熔點的提高而增大。在電力設備中,目前,還很少采用高真空作為絕緣介質,因為電力設備的絕緣結構中總會使用固體絕緣材料,這些固體絕緣材料會逐漸釋放出吸附的氣體,使真空無法保持。目前,真空間隙只在真空斷路器中得到應用。真空不僅絕緣性能好,而且有很強的滅弧能力,所以真空斷路器已廣泛應用于配電網(wǎng)絡中。

(2)電氣強度SF6的采用

高氣壓高真空到一定限度后,給設備密封帶來很大困難,造價也大為上升。而且10個大氣壓以后,再提高氣壓,效果也越來越差。近十年,人們發(fā)現(xiàn)許多含鹵族元素的氣體化合物,SF6CCl4、CCl2F2等的電氣強度都比空氣高很多,這些氣體通常稱為高電氣強度氣體。采用這些氣體代替空氣可以提高間隙擊穿電壓,縮小設備尺寸,降低工作氣壓。

1-5中列出了幾種氣體的相對電氣強度。所謂某種氣體的相對電氣強度是指在氣壓與間隙距離相同的條件下該氣體的電氣強度與空氣電氣強度之比。

1-5               幾種氣體的相對電氣強度

氣體

 N2

SF6

CCI2F2

CCI4

相對電氣強度

 1.0

2.3~2.5 

2.4~2.6 

6.3 

絕緣介質1個大氣壓下得液化溫/

 -195.8

 -63.8

-28 

26

SF6氣體的主要優(yōu)點有:除了具有較高的電氣強度外,還有很強的滅弧性能。它是一種無色、無味、無毒、非燃性的惰性化合物,對金屬和其他絕緣材料沒有腐蝕作用,被加熱500仍不會分解。在中等壓力下,SF6氣體可以被液化,便于儲藏和運輸SF6氣體被廣泛用于大容量高壓斷路器、高壓充氣電纜、高壓電容器、高壓充氣套管以及全封閉組合電器中。采SF6電氣設備的尺寸大為縮小,例如,500kVSF6金屬封閉式變電站的占地僅為開放500kV變電站用地5%,且不受外界氣候變化的影響。

SF6電氣設備的缺點是造價太高,而且作為一種對臭氧層有破壞作用的溫室氣體,SF6的進一步應用也遇到一些問題,不過目前還找不到一種在性能、價格方面都能SF6競爭的高電氣強度氣體。

 


北京中航時代儀器設備有限公司
  • 聯(lián)系人:石磊
  • 地址:北京市房山區(qū)經(jīng)濟技術開發(fā)區(qū)1號
  • 郵箱:zhsdyq@163.com
  • 傳真:86-010-80224846
關注我們

歡迎您關注我們的微信公眾號了解更多信息

掃一掃
關注我們
版權所有 © 2026 北京中航時代儀器設備有限公司 All Rights Reserved    備案號:京ICP備14029093號-1    sitemap.xml
管理登陸    技術支持:化工儀器網(wǎng)    
亚洲欧美熟女视频免费| 欧美精选一区二区三区久久| 91久久国产香蕉| 91久久久久区一区二| 青青草官网视频在线观看| 欧美激情一区二区三区国产| 麻豆精品视频网站在线观看| 在线观看黄色成人av| 3d动漫女人被男人爆操嫩穴| 网友自拍视频在线| 一区二区三区精品在线| 日韩精品av在线免费观看| 免费国产一级av大片| 亚洲中文字幕一区二区视频| 一区二区视频资源在线观看| 中国特黄一级黄色片| www在线观看视频污| 午夜中文av在线| 人妻熟妇免费视频| 91尤物在线一区二区三区| 美女第一直播平台| 国产日产一区二区三区久久久久久| 日韩熟女在线视频| 91污污污在线观看下载| 人妻丝袜高跟中出| 大学生免费一级av一片| 亚洲欧美综合7777色婷婷| 中国少妇日本少妇| 精品人妻在线不人妻| 一区二区亚洲免费观看视频| 在线无码精品国产自在久国产| 午夜精品久久成人| 哪有免费av毛片| 蜜桃视频综合一区| 精品一区二区三区一区二区三区| 青青草综合视频在线观看| 91大神高清在线| 欧美成人精品高清在线下载| 老鸭窝在线观看免费视频| 巨乳美女av在线| 美女黑丝国产在线观看| 蜜桃成熟1997免费观看徐锦江| 亚洲欧美另类亚洲欧美| 国产精品资源自拍| 资源一区二区三区在线播放| 桥本有菜av精品免费播放| 人妻少妇a v中文字幕| 在线观看黄色成人av| 久久精品av成人| 都市猎艳激情小说| 国产中文字幕2020| 亚洲欧美日韩综合人妻| 又大又猛又粗又爽| 一级男女爱爱视频黄免费试看| 人妻少妇一区二区| 免费观看日韩毛片| 久久国产精品亚洲麻豆v| 大屁股骚逼操比视频软件| 久草青青在线播放视频| 日本亚洲欧美日韩精品| 女人被爽的高潮视频全黄| 秋霞国产午夜精品免费视频| 好了AV四色综合无码久久| 在线视频日本综合| 欧美激情视频在线全球共享| 亚洲日产精品一二三四| 精品人妻aⅴ一区二区| 日本女人被男人用力插骚逼的大| 男人天堂网站亚洲| 亚洲丰满熟妇xxxx色| 最近最新中文字幕日a精品人妻| 91久久国产香蕉| 91av偷拍视频| 91丝袜美腿精品一区二区在线观| 日本中文高清字幕网站| 人妻性奴隶精品一区91| 麻豆亚洲一区麻豆| 天天亲天天操天天射| 日本久久久激情视频| 人妻少妇a v中文字幕| 青青操91在线视频免费| 高跟丝袜av在线一区二区三区| 成人做爰毛片免费一| 97成人公开视频| 亚洲一区二区三区在线观看91 | 中文有码视频在线免费观看| 中文字幕人妻丝袜久久| 日韩成人av一区二区| 资源一区二区三区在线播放| 成年人正能量短片| 在线亚洲av网址| 蜜臀av中字字幕网站| 97免费视频资源总站| 91久久综合亚洲天堂| 森泽佳奈中文字幕在线观看| 黑人大鸡巴专操华人美女淫穴视频| 婷婷精彩视频在线精品看| 极品大奶子福利在线观看| ae老司机精品福利视频| 丰满美女高潮喷水| 亚洲人妻视频免费| 国产精品久久精品视频| 成年片色大黄全免费网站久久| 在线免费观看视频国产| 亚洲福利视频合集| 亚洲无线观看国产精品| 十大黄色禁看软件| 三级黄色大片试看| 亚洲国产麻豆一区| 久久成人精品一区二区激情| 少妇床戏av蜜桃| 免费软件视频聊天| 欧美激情在线网站亚洲一区| 亚洲精品成人av在线| 国产精品小视频啊啊啊| 免费a级黄色av网站| 丰满少妇午夜福利视频| 高跟丝袜av在线一区二区三区| 98精品视频在线播放| 日韩熟女一区二区免费| 久久久久久久久久久63| 欧洲亚洲自拍偷拍| 亚洲精品视频国产精品视频| 国产三级精品大乳人妇| 人摸人人人澡人人超碰手机版| 夏洛特的烦恼在线播放高清| 别插了受不了快拔出来视频| 免费看片网址一区二区三区| 青青久草视频在线99| 日韩熟女一区二区免费| 亚洲免费一区二区三区四区 | 色尼古日本人与兽| 亚洲 精品 人妻 在线| 青青青小草青青在线播放视频| 好了AV四色综合无码久久| 亚洲国产精品卡一卡二| 在线观看日韩论理| 国产一区熟女在线视频| 2021国产麻豆剧传媒| 人妻 精品一区二区三区| 日韩色图综合亚洲| 久久精品人妻91| 亚洲人成网线在线播放va| 国产中文字幕乱码在线观看视频| 亚洲欧美国产色逼视频| 青青草综合视频在线观看| 欧美亚洲另类第一| 日本精品一区二区三区试看| 超碰97在线观看免费视频| xxxx日本熟妇| 亚洲蜜桃精品视频| 国产精品自拍偷拍中文字幕| 亚洲伊人成伊伊人成| 黄色十大禁止软件| 最新免费黄色av网址| 97成人公开视频| 成人在线视频播放一区| 污污在线一区二区| 亚洲欧美另类亚洲欧美| 91国内精品久久久久精品一区| 亚洲精品久久久久久首页| 欧美日本高清视频99| 夜夜操夜夜夜夜夜爽| 日本精品 a在线观看| 欧美日韩亚洲免费综合| 亚洲久久久久久久蜜桃视频| 亚洲av黄色在线播放| 麻豆精品视频网站在线观看| 青青草原 华人在线| 中文国产亚洲精品| 夏洛特的烦恼在线播放高清| 久久91久久精品久久| 国产精品资源自拍| 美女视频美女视频网站| 夜夜操夜夜摸视频| 欧美一区二区激情免费| 4虎视频成人在线| 青青草原在线精品视频免费| 久久综合狠狠综合| 射精后第二天乏力| 92顶级少妇午夜免费福利| 一区二区二区在线播放| 苏联大鸡巴插在女人阴道里| 中文字幕久久人妻网站| 亚洲天堂av资源| 麻豆少妇av对白| 精品毛片久久久久久久久久久久| 国产诱惑在线视频播放| 日韩熟女在线视频| 精品精品免费免费免费| 欧美在线不卡视频| 婷婷国产偷V国产偷V厂亚洲高清| 亚洲精品免费日韩| 女人的天堂av在线观看| 国产超级va在线观看视频| 欧美日韩丝袜美腿| 国产在线观看播放视频| 国产亚洲天堂自拍| 少妇床戏av蜜桃| 丝袜美腿福利在线观看| 99久久久久国产精品一级小说| 国产第一区美女福利视频| 森泽佳奈中文字幕在线观看| 欧美成人激情网站| 青青免费av观看| 116美女写真午夜免费视频 | 中文字幕中文字幕在线| 旗袍丝袜美腿美女图片| 一区二区香蕉久久| 欧美精品一区二区久久丝袜| 人妻少妇免费视视频一区二区| 日本一二三区不卡ww| 森泽佳奈中文字幕在线观看| 人摸人人人澡人人超碰手机版| 青青久草视频在线99| 天天色天天色天天爱| 国偷av国产av自拍| 中文有码在线视频观看| 美女被人操出白浆| 91调教免费视频| 永久成人在线视频| 桥本有菜av精品免费播放| 免费av网站中文| 男女操大逼的视频免费观看| 黑屌操欧极品小嫩逼| 亚洲成年人黄色激情化| 97成人公开视频| 阿v国产在线观看| 在线播放日韩一区| 久草中文av在线| 国产自拍视频免费播放| 在线成人资源播放| 中文国产亚洲精品| 九色porny9l自拍| 久久精品国产一区二区三区不卡| 久久国产树林老头视频| 欧美熟妇日本熟女| 91制片厂制片传媒在线播放| 欧美另类丝袜变态二区| 亚洲人成网线在线播放va| 天天插天天爱天天透| 国产经典亚洲天堂| 丰满美女高潮喷水| 日本精品 a在线观看| 日本一二三区不卡ww| 欧美日本高清视频99| 成人阿v在线观看| 亚洲伦理一区二区在线观看| 国语版三级黄色片| 一区二区三区精品在线| 91主播福利在线| 不卡深夜在线视频| 精品一区二区三区中文字幕老牛| 亚洲精品在线观看aa| 欧美一区二区三区伦理片| 91超频在线观看视频| 久久久噜呀噜噜久久免| 98人妻精品一区二区| 欧美jizzhd精品欧美24| 中文字幕av四区| 美女被内设黄色视频免费看| 日日操夜夜嗷嗷叫| 超碰在线观看视频91| 天天澡天天添天天摸| 亚洲精品久久久久久首页| 日韩视频一二三区| 吉林熟女啪啪哦哦叫| 国产精品制服丝袜在线观看| 亚洲国产中文字幕蜜臀| 瑟瑟的视频在线免费观看| 苏联大鸡巴插在女人阴道里| 亚洲国产伊人久久| 亚洲综合av网自拍| 天堂av在线成人免费| 国产精品资源自拍| 99久久无码国产孕妇精品| 日本精品美女在线观看| 国产放荡av国产精品| 黄色成人免费大片| 成人在线视频播放一区| 亚洲国产精品不卡av在线app | 日韩极品美女视频| 93精品视频在线| 天天色天天操天天爽| 日韩av在线综合| 日韩成人在线另类调教性奴视频 | 神马午夜伦理在线观看| 日韩欧美人妻中文字幕一区二区| 黄色av亚洲黄色av| 99久久精品氩 91久久久| 熟女人妻久久久一区二区| 色哟哟丨小丨国产专区| 午夜精品久久久久久久99十八禁| 亚洲乱熟女一区二区三| 欧美成人兔费视频| 穿黑丝女子跳舞的视频| 久久精彩视频98| 亚洲最大成人在线观看不卡| 哪有免费av毛片| 黄色十大禁止软件| 欧美激情五月网址| 欧美性感比基尼视频| 第一精品福利导航网| 欧美av国产av日本av在线播| 一级特黄在线观看| av黄色片在线播放| 毛片av在线网址| 中文 日韩 人妻 丝袜| 亚洲国产精品白浆| 欧美一区综合视频| 青青久草视频在线99| 蜜桃精品一区二区在线| 日韩国产精品专区一区性色| 香港一级特黄大片| 中文字幕久久人妻网站| 成人午夜电影中文字幕| 99久久精品氩 91久久久| 久久精彩视频98| 在线免费观看视频国产| 66色吧超碰97人人做人人爱| 免费特黄黄色大片| 91尤物在线一区二区三区| 国产精品视频看看| 国产精品久久精品视频| 在线观看av裸体| 天天操天天摸天天干天天舔| 中国丰满人妻av| 久久伊人国产超碰| 天天日天天操天天插| 56av国产精品久久久久久久| 国内精品乱码卡一卡2卡麻豆| a播国产精品视频| 中文字幕av九区| 人妻少妇一区二区| h动漫精品一区二区三区免费| 色婷婷亚洲综合网| 日本一二三区不卡ww| 成人在线免费亚洲| 亚洲男女一区二区三区| 黑人大鸡巴专操华人美女淫穴视频| 日韩一卡二卡无人区在线免费观看| 欧美日韩精品综合国产| 国产久久精品福利| 亚洲欧美视频一区二区三区| 九色porny9l自拍| 欧美色b网一人在线| 黄色成人免费大片| 太骚了就想被大鸡巴操视频| 日韩av精品国产av精品| 免费国产一级av大片| 免费软件视频聊天| 日本熟妇视频在线| 人妻性奴隶精品一区91| 91久久视频在线播放| 欧美日韩丝袜美腿| 女人被爽的高潮视频全黄| 正在播放国产99热在线| 国产激情片免费在线视频| 美女直播被艹视频| 亚洲一区二区三区四区美女 | 国模精品久久久久性色av| 2018日日操夜夜操| 网友自拍视频在线| 日本久久中文字幕日韩| 在线成人资源播放| 日本精品美女在线观看| 91久久国产香蕉| 欧美亚洲另类第一| 美女把逼扒开让男人捅| 亚洲无线观看国产精品| 亚洲伊人久久中文字幕| 亚洲欧美国产色逼视频| 久久看视频这里有精品| 免费观看日韩毛片| 熟女中文字幕丝袜日韩| 美女嫩模福利在线| 国产亚洲天堂自拍| 亚洲午夜福利短视频| 天天操夜夜干美女| 青青草av在线观看入口| 欧美三级日韩视频| 国产精品小视频啊啊啊| 欧美日韩亚洲免费综合| 特黄特色大片免费播放器| 成人看刺激性高潮毛片| 麻豆少妇av对白| 91在线视频你懂| 一区二区亚洲免费观看视频| 午夜精品久久久久久不卡av| 久久久乱码精品一区二区三区| 在线无码精品国产自在久国产| 女人的天堂av在线观看| 亚洲免费一区二区三区四区| 国产在线观看你懂| 亚洲欧美日韩综合人妻| 久久艹日中文字幕| 第一精品福利导航网| 粉嫩高清一区二区三区| 午夜精品久久成人| 天天插天天爱天天透| 免费观看日韩毛片| 久久夜色精品国产亚洲AV动搜索| 伊人一区二区三区四区五区| 男女插插视频推荐| 伊人一区二区三区四区五区| 亚洲另类丝袜美女| 久久丝袜美腿诱惑| 激情小说亚洲另类| 黄片在线观看日本| 超碰在线观看视频91| 久久久久9999精品99久久 | haose我爱av| 青青草福利视频在线观看| 婷婷午夜精品久久久久久久久久| 超碰97在线观看五月天| 亚洲视频在线观看资源| 自拍偷拍激情在线| 中文精品福利视频| 国产综合在线视频免费看| 国产精品久久a|| 日本一区二区三区人妻| 中文字幕久久人妻网站| 亚洲欧美自拍第页| 人妻少妇免费视视频一区二区| 大屁股骚逼操比视频软件| 国产电视剧在线观看高清资源| 日本久久中文字幕日韩| 国产三级内射在线| 激情综合胖子射精| 中文有码在线视频观看| 国产成人高清视频免费| 丝袜成人av网址| 日本高清视频ww| 在线免费观看调教| 麻豆精品国产传媒av绿帽社| 亚洲欧美最大色精品网站免费观看| 亚洲自拍偷拍在线视频| 六月丁香激情综合啪啪| 精品国产麻豆精品| 亚洲素人熟女久久久| 一区二区二区在线播放| 一区二区香蕉久久| 天天色天天色天天爱| 欧美色b网一人在线| 美腿玉足在线一区二区| 欧美人妻中文字幕天天爽| 午夜精品偷拍视频| 97电视剧在线观看免费| 国产放荡av国产精品| 中文有码视频在线免费观看| 大鸡巴插小逼里面爽的呻吟视频| 亚洲精品视频自拍成人| 国产性感美女在线免费观看| 蜜桃精品视频观看| 91蜜桃在线免费视频| 上视频在线观看免费| 亚洲综合成人精品电影| 日本丰满大奶熟女一区二区| 精品毛片久久久久久久久久久久| 天天亲天天操天天射| 日本亚洲欧美日韩精品| 亚洲一区二区三区四区在线观看 | 日韩av精品国产av精品| 欧美一区二区三区高清不卡tv | 国产免看一级a一片成人av| 午夜43路在线免费观看| av天堂成人毛逼| 久久免费精品国产72精品剧情 | 国产精品视频看看| 一级特黄在线观看| 精品一区二区三区一区二区三区| 99久久精品国产亚洲av| av青青草三级在线观看| 国偷av国产av自拍| 成人看刺激性高潮毛片| mimk–119中文字幕在线| 色综合久久久综合99| 国产无遮挡又爽又黄网站| 亚洲精品久久久久久首页| av天堂亚洲第一| 国产一区熟女在线视频| 初撮人妻一区二区三区| 久久久午夜福利专区| 日韩视频一二三区| 亚洲视频一区在线观看不卡| 91制片厂制片传媒在线播放| 第一精品福利导航网| 欧美在线观看一区二区三区国产| 久久看视频这里有精品| 第一精品福利导航网| 91人妻中文字幕在线精品4| 熟女不卡系列一区二区| 国产尤物主播在线| 很黄很黄的床视频片段| 91污污污在线观看下载| 国产午夜激情一区| 女人被戳鸡鸡视频| 亚洲欧美另类国产人妻| 久久观看视频在线| 自拍偷拍在线欧美| 欧美亚洲另类第一| 黄片视频免费网站在线观看| 国产放荡av国产精品| 天天澡天天添天天摸| 丝袜美腿福利在线观看| 日本精品美女在线观看| x8x8成人免费| 穿黑丝女子跳舞的视频| 中文字幕av四区| 桥本有菜av精品免费播放| 一区二区香蕉久久| av不卡免费网站| 成人精品自拍视频免费看| 嘿咻视频在线观看了| 青青草av在线观看入口| 韩国在线不卡一区二区三区| 国产无遮挡又爽又黄网站| 116美女写真午夜免费视频 | 亚洲精品久久久久久首页| 亚洲制服丝袜在线诱惑一区| 亚洲丰满熟妇xxxx色| 在线精品国自产拍| av少妇一区二区三区| 中文字幕av九区| 欧美午夜一区二区在线| 人妻久久精品夜夜爽一区二区| 推特美女福利视频| 高清av有码在线| 92顶级少妇午夜免费福利| 日本av在线视频| 天天日天天爱天天操天天干| 女人操逼男人的视频| 激情成人av在线| 四虎884aa成人精品最新| 在线免费播放91| 日本aⅴ毛片成人| 久草中文av在线| 轮奸在线一区一区三区| 亚洲国产中文字幕蜜臀| 欧美情色亚洲情色| 午夜精品久久久久久不卡av| 日日本大香蕉日日本大香蕉| 黄色十大禁止软件| 啪啪啪在线播放网站| 18成人久久久久久无码mv| 福利美女在线视频| 午夜国产视频激情戏| 大香蕉手机伦理在线| 视频一区二区三区久久| 一区二区三区免费在线播放| 99久久无码国产孕妇精品| 国产亚洲精品人妻| 国模在线一区二区三区| 成人午夜电影中文字幕| 森泽佳奈中文字幕在线观看| 最新日本一区二区三区| 激情小说亚洲另类| 亚洲天堂最新av| 人妻少妇久久久久久97人妻| 亚洲视频在线观看资源| 后入欧美美女在线视频| 天天躁日日躁狠狠躁超碰97| 熟女人妻久久久一区二区| 国产免看一级a一片成人av| 欲求不满人妻少妇| 欧美日韩激情免费看| 欧美激情五月网址| 999久久久国产精品免费| 亚洲 欧美 制服 丝袜 91| 亚洲欧美日韩综合人妻| 推特美女福利视频| 穿黑丝女子跳舞的视频| 国内精品乱码卡一卡2卡麻豆| 久久国产精品亚洲精品99| 91新人kinolu在线播放| 免费人妻在线视频观看| 中文 日韩 人妻 丝袜| 丝袜亚洲国产中文| 人妻久久久久一区二区三区| 体内射精sex合集| 欧美精选一区二区三区久久| 91丝袜美腿精品一区二区在线观| 久久精品噜噜av成人| 男人插进女人逼里视频| 欧美在线不卡视频| 亚洲欧美国产日韩第一页 | 在线视频国产免费观看| 久久网国产精品色婷婷免费 | 91制片厂制片传媒在线播放| 999国产精品亚洲| 日日本大香蕉日日本大香蕉| 午夜国产亚洲精品| 亚洲人妻视频免费| 青青草原 华人在线| 91制片厂制片传媒在线播放| 成人 在线 视频| 色尼古日本人与兽| 亚洲欧美丝袜制服诱惑| 男人午夜免费福利| 人妻蜜桃臀中文字幕一区二区| 中无码人妻丰满熟妇啪啪| 日本久久久激情视频| 欧美jizzhd精品欧美24| 日本老女人bbxxw| 成人动漫天堂av| 国产日韩精品欧美| 蜜桃精品视频观看| 亚洲综合av网自拍| 日韩中文字幕久久精品| 女人av一区二区三区| 日本一二三区不卡ww| 999久久久婷婷婷久久久| mimk–119中文字幕在线| 女人做爰高潮免费播放网站| 男生和女生日逼视频观看| 蜜桃精品一区二区在线| 成人av手机免费在线观看| 亚州综合一区二区三区| 黄色美网站在线观看污污污| 亚洲第一在线播放| 欧美激情一区二区三区国产| 美女网站午夜麻豆一区| 亚洲欧美另类是图| 久久久久久久久久久免费看| 欧美一区二区三区在线激情| 视频一区二区三区欧美国产| 九色91国产网站视频| 免费欧洲毛片a级视频无风险| 顶级黄色片久久免费看| jvid一区二区三区| 人妻 精品一区二区三区| 日韩av在线综合| 国产chinese男男激情| 大乳奶一级淫片aaa片挤奶| 亚洲第一码久久播放| 亚洲国产伊人久久| 成人激情在线播放| 欧美午夜一区二区在线| 逼喷水在线免费观看2| 青青青小草青青在线播放视频| 91丝袜美腿精品一区二区在线观| 黄片在线观看日本| 偷拍自拍 亚洲视频| 爆操熟女视频在线观看| 亚洲精品久久久久久首页| 亚洲欧美综合7777色婷婷| 国产精品jizz在线观看| 中文字幕人妻丝袜久久| 亚洲av在线观看免费| 五月婷婷丁香激情对白一区二区| 国语版三级黄色片| 久久夜色精品国产亚洲AV动搜索| 丝袜亚洲国产中文| 国产av成年精品| 久久久久9999精品99久久| 天堂资源中文字幕在线| 久久网国产精品色婷婷免费| 国产免看一级a一片成人av| 中文字幕人妻丝袜久久| 成人精品自拍视频免费看| 国偷av国产av自拍| 日本少妇xxx视频| 在线欧美亚洲一区| 国产偷拍自拍合集| 丰满少妇午夜福利视频| 亚洲视频一区在线观看不卡| 97免费视频资源总站| 天堂资源中文字幕在线| 嘿咻视频在线观看了| 天天澡天天添天天摸| 91在线观看福利视频| 国产chinese男男激情| h动漫精品一区二区三区免费| 资源一区二区三区在线播放| 亚洲丝袜制服日韩熟女| 嗯啊 不要 奶子| bbbb在线免费av| 蜜桃精品视频观看| 一区二区香蕉久久| 精品精品免费免费免费 | 人妻久久搭讪中出电影| 丝袜美腿福利在线观看| caoporn人妻| 99视频精品免费播放| 激情综合胖子射精| 蜜桃精品视频观看| 欧美精选一区二区三区久久| 99久久精品99| 小泽玛利亚二区三区在线| 元码中文字幕一区二区| 狂野少女免费完整版中文| 中文字幕国产视频在线播放| 国产av有码中文| 国产一区熟女在线视频| 国产欧美在线观看不卡一| 欧美vieox另类极品| 精品国产高清福利| 中文字幕av自拍乱码| 男女操大逼的视频免费观看 | 欧美熟妇日本熟女| 欧美日韩丝袜美腿| 在线精品国自产拍| 79久久久久久久69| 亚洲一区二区三区四区在线观看| 999国产精品亚洲| 91一区二区中文字幕| 国产高清欧美日韩| 亚洲视频一区在线观看不卡| 中文有码视频在线免费观看| 中文有码视频在线免费观看| 日日躁狠狠躁av| 好好的日天天日妻| 丝袜美腿福利在线观看| av天堂亚洲首页| 亚洲伊人成伊伊人成| 日本特一级免费大片| 女人高潮久久久久久久视频| 人妻少妇88精品| 99国产精品99精品国产| 国产在线精品毛片| 福利美女在线视频| 国产av一卡二卡三卡四卡| 福利精品视频在线观看| 刺激性欧美一区二区三区| 亚洲美女人妻av| 亚洲国产精品青青网| 黄色国产精品视频三十分钟| 亚洲天天狠狠操夜夜狠狠操| 免费精产国品一二三| 色哟哟丨小丨国产专区| 亚洲欧美另类是图| 自拍偷拍在线欧美| 中文字幕网址大全| 青青草原 华人在线| 精品久久久久久久久免费| 91福利电影在线观看| 91污污污在线观看下载| 好了AV四色综合无码久久| 亚洲综合成人精品电影| 国产有码在线一区二区视频| 啪啪啪在线播放网站| 特黄特色大片免费播放器| 亚洲jlzzjizz少妇女| 亚洲蜜桃精品视频| 大香蕉手机伦理在线| 卡通动漫400页亚洲片影音先| 亚洲在线国产一区| 一区二区 欧美激情| 国产激情片免费在线视频| 免费欧洲毛片a级视频无风险| 99r在线播放精品视频| 国模在线一区二区三区| 太骚了就想被大鸡巴操视频| 偷拍激情文学欧美| 轮奸在线一区一区三区| 国产日产欧产美韩系列三级| 国产日韩精品欧美| 熟女人妻久久久一区二区 | 44388在线观看| 国产精品男人的天堂999| 在线中国亚洲欧美激情片| 亚州综合一区二区三区| 亚洲人妻视频免费| 亚洲 欧美 制服 丝袜 91| 国产地址在线观看一区| 真人一级毛片免费播放在| 日本女人被男人用力插骚逼的大 | 青青草原在线精品视频免费| 国产精品久久精品视频| 丰满少妇午夜福利视频| 丝袜亚洲国产中文| 天天干天天闹天天舔天天透逼| 好了AV四色综合无码久久| 熟女不卡系列一区二区| 97免费视频资源总站| 久久艹日中文字幕| 黑屌操欧极品小嫩逼| 卡通动漫400页亚洲片影音先| 亚洲一区二区三区四区美女| 97公开成人免费视频| 午夜43路在线免费观看| 国产在线精品毛片| 大香蕉伊人av网| 久久免费精品国产2020| 国产自拍av资源| 阴茎进1入阴道视频| 阿v国产在线观看| 欧美 日韩 丝袜 偷拍| 日韩一卡二卡无人区在线免费观看| 亚洲欧美最大色精品网站免费观看| 久久人妻福利中文字幕日韩| 永久免费视频网站在线| 久久精品噜噜av成人| 啪啪亚洲伊人啪啪啪啪啪欧美| 黄色a级视频观看| 丝袜美腿福利在线观看| 极品美女在线高潮| 久久精品人妻91| 丝袜美腿中文字幕在线观看| 亚洲无久久久久久久久| 国产偷拍自拍色图| 资源一区二区三区在线播放| 欧美三级日韩视频| 午夜美女大尺度福利视频| 狂撞无码人妻在线播放视频| 亚洲精品成a在线观看| 大肉大捧一进一出视频出呀| 亚洲情色精品av| 男人插进女人逼里视频| 中文字幕精品亚洲字幕网| 在线av资源网站| av天堂资源最新版中文版| 午夜在线一区二区三区| 小泽玛利亚二区三区在线| 欧美亚洲一区二区日韩激情| 国语版三级黄色片| 999久久久国产精品免费| 国产情侣偷拍自拍| 中国人妻性感在线| 日韩成人美女视频| 国产亚洲天堂自拍| 成人精品视频视频| 加勒比一区二区在线观看| 中文精品福利视频| 国内外美女激情免费观看视频| 九色成人自拍视频| 午夜在线观看视频免费| 国模在线一区二区三区| 蜜桃在线播放观看| 99久久精品99| 天天日天天爱天天操天天干| 青青操视频在线免费播放| 国产日韩欧美911在线观看| 日韩美女综合中文字幕pp| 爆操熟女视频在线观看| 国产九色刺激露脸对白| 欧美成人激情一级精品| 亚洲免费黄色av网站| 天天色天天色天天爱| 欧美熟妇日本熟女| 天天爱天天看天天摸| 国产地址在线观看一区| 日本不卡一区二区高清视频| 免费国产精品第一黄色| 日韩av在线综合| 久久精品av成人| 亚洲国产精品青青网| 黄色片久久久久久久久久| 太骚了就想被大鸡巴操视频| 日韩人妻系列一区二区| 国产精品九九精品久久免费| 亚洲第一区2区3区在线观看| 91蜜桃在线入口| 国产成a免费在线播放| 在线免费播放91| 高潮喷水少妇av| 国产成a免费在线播放| 美女被草在线网站| 久久久噜呀噜噜久久免| 瑟瑟的视频在线免费观看| 久久久99精品免费观看乱色| 在线免费观看调教| 亚洲jlzzjizz少妇女| 亚洲av综合伊人| 神马午夜伦理在线观看| 少妇人妻一区二区视频| 91在线观看福利视频| 人妻熟妇免费视频| 亚洲人妻一区二区91九色| 18成人久久久久久无码mv| 黄色成人免费看片| 亚洲免费黄色av网站| 自拍亚洲欧美另类| 久久真人黄色片免费观看| 麻豆国产精彩对白| 成人在线视频播放一区| 欧美精品一区二区久久丝袜| 插亚洲综合色视频| 中文一区二区三区色| 日本亚洲欧美日韩精品| 男女操大逼的视频免费观看| 日韩亚洲av专区| 最新地址亚洲天堂| 日韩中文字幕久久精品| 日日躁狠狠躁av| 阴茎进1入阴道视频| jvid一区二区三区| 亚洲欧美另类亚洲欧美| 欧美a级视频一区二区三区| 国产啊啊在线播放| 成年片色大黄全免费网站久久 | 98人妻精品一区二区| 肏死我的小骚逼视频| 看看免费的黄色性生活动作片| 青青草免费海量在线观看| 男人的天堂 午夜| 超碰自拍在线观看| 亚洲免费一区二区三区四区| 夜夜操夜夜夜夜夜爽| 久久观看视频在线| 欧美一区综合视频| 亚洲一区二区av偷偷| 男人的天堂 午夜| 粉嫩高清一区二区三区| 亚洲美女人妻av| 国产成a免费在线播放| 偷拍自拍 亚洲视频| 91丝袜美腿精品一区二区在线观| 国产高清国内精品福利免费| 中国丰满人妻av| 91主播福利在线| 国产另类在线视频| 国产不卡的av网站在线观看| 天天日天天干婷婷| av探花在线播放| 久久真人黄色片免费观看| 国产放荡av国产精品| 中文字幕久久六月色综合| 久久综合金8天国| 97超pen在线视频人妻| 欧美日韩亚洲免费综合| 午夜精品久久成人| 人妻互换一二三视频| 国产不卡的av网站在线观看| 国产无遮挡又爽又黄网站| 79久久久久久久69| 国产av一卡二卡三卡四卡| 中文字幕中文字幕在线| 国偷av国产av自拍| 国产精品视频一区免费| 亚洲jlzzjizz少妇女| 在线亚洲av网址| 大香蕉手机伦理在线| 在线观看小视频亚洲| 中文 日韩 人妻 丝袜| 欧美亚洲一区二区日韩激情| 美女直播三级视频| 亚洲无线观看国产精品| 伊人一区二区三区四区五区| 亚洲自拍偷拍视频第一页| 中文字幕日本αv| 久久久午夜福利专区| 成人精品视频视频| 中文字幕伊人久久在线| 国产高清欧美日韩| 天天色天天碰天天干| 天天爱天天看天天摸| 国产av一卡二卡三卡四卡| 97超级碰碰视频在线| 大香蕉伊人av网| 最近的中文字幕在线看| 99热网址在线观看一区| bbbb在线免费av| 麻豆tv网站观看| 国产av一卡二卡三卡四卡| 亚洲精品成人av在线| 44388在线观看| 西门庆91蜜桃臀女神是谁| 欧美一区综合视频| 午夜色大片免费看| 两个人的视频全免费观看| 99er精品在线播放| 久久久久国产美女极度色诱| 国产综合在线视频免费看| 日本老熟妇net| 亚洲18禁在线播放| 怎样看黄色小视频| 亚洲情色精品av| 999久久久婷婷婷久久久| 国产又猛又粗又硬又黄视频| 天天日天天干婷婷| 国模在线一区二区三区| 国产超级va在线观看视频| 欧美熟妇日本熟女| 国产精品高潮av大全| 第一精品福利导航网| 久久久噜呀噜噜久久免| 午夜影院在线观看黄| 高跟丝袜av在线一区二区三区| 在线无码精品国产自在久国产| 顶级黄色片久久免费看| 97碰人妻免费观看视频| 激情小说人妻欧美| 久久精彩视频98| 免费看片网址一区二区三区| 99久久精品氩 91久久久| 黄色国产精品视频三十分钟| 2026www中文字幕| 欧美三级日韩视频| 亚洲成年人黄色激情化| 婷婷国产偷V国产偷V厂亚洲高清| 欧美一区综合视频| 色悠久久久久久久综合网| 六月丁香激情综合啪啪| 亚洲天堂中文av| 男生操女生的b在线观看| 亚洲国产中文字幕蜜臀| 成人 av 中文字幕| 欧美国产视频自拍| 日本久久中文字幕日韩| 日韩色图综合亚洲| 亚洲免费一区二区三区四区| 国产精品高潮av大全| 欧美美女久域视频网站| 亚洲资源成人在线| 国产精子久久久久久久| 精品av永久在线| 亚洲欧美国产日韩第一页| 三级黄色大片久久久久久| 亚洲免费av在线观看一区| 亚洲素人熟女久久久| 国产午夜在线一区二区三区 | 欧美日韩国产视频一区二区| 亚洲精品视频自拍成人| 中文字幕熟女人妻丝袜丝av| 老鸭窝在线观看免费视频| 国产久久精品福利| 97碰人妻免费观看视频| 三级日本一区二区三区| 成人 中文字幕在线| 91蜜桃在线入口| 日本丰满大奶熟女一区二区| 91久久久久区一区二| 黄片在线观看日本| 91久久综合精品久久久综合| 午夜在线观看视频免费| 熟女少妇一区二区亚洲| 亚洲国产人成自精在线尤物| 久久免费精品国产72精品剧情 | 第一精品福利导航网| 久久国产精品视频播放| 啪啪亚洲伊人啪啪啪啪啪欧美| 熟女人妻在线视频观看| 999久久久激情| 国产精品伦理在线观看| 99视频精品免费播放| 国产又猛又粗又硬又黄视频| 国产av忽忽那年校园事| 青青免费av观看| 久久精品噜噜av成人| 91久久久久区一区二| 97成人公开视频| 国产av一卡二卡三卡四卡| 亚洲最大成人在线观看不卡| 97公开成人免费视频| 最新日本一区二区三区| 天天操夜夜干美女| 国产一级精品特黄| 中国老熟女xxx| 欧美一二三在线视频| 亚洲69xxxxx| 美女嫩模福利在线| 国产69精品久久久久99尤| 人妻 精品一区二区三区| 超碰免费在线国产| 亚洲另类丝袜美女| 日韩中文字幕久久精品| 91污污污在线观看下载| 久久久久人妻丝袜一区二区三区| 超超碰超碰在线观看| 中文字幕在线视频第一页一区| 国产精品高潮呻吟av92| 熟女不卡系列一区二区| 97超pen在线视频人妻| 视频一区二区免费观看| 18中文字幕在线| 国产91单男3p在线观看| 九九只有精品视频| 青青免费av观看| 欧美vieox另类极品| 在线视频成人一区二区| 国产诱惑在线视频播放| 国产成人高清视频免费| 女人摸男人的丁丁视频| 日韩欧美人妻中文字幕一区二区| 免费看片网址一区二区三区| 激情小说人妻欧美| 顶级黄色片久久免费看| 99国产免费自拍视频| 免费在线看黄色的网站| 色综合久久久综合99| 亚洲精品国产欧美| 在线成人资源播放| 污污亚洲国产黄色第一x| 亚洲 精品 人妻 在线| 青青草官网视频在线观看| 国产无遮挡又爽又黄网站| 国产日韩精品欧美| 国产精品福利片在线播放| 国模在线一区二区三区| 久久精品人妻91| 91久久久久区一区二| 懂色av蜜臀性色av| 久久久免费亚洲熟妇熟女| 激情婷婷中文字幕| 国产av一卡二卡三卡四卡| 77777亚洲熟妇av在线| 成人精品免费在线视频| 99久久久久国产精品一级小说| 国产精子久久久久久久| 黄色国产精品免费推荐| 巨乳美女av在线| 亚洲免费av在线观看一区| 青青草官网视频在线观看| 亚洲毛片av网站| 精品一区二区久久久久久久| 日韩成人av一区二区| 亚洲最大成人在线观看不卡| 欧美日韩丝袜美腿| 日本不卡一区二区高清视频 | 三级视频无码在线观看| 亚洲欧美另类在线中文字幕| 扒开女子下面让男人桶的视频| 91久爽久色在线观看| 三级三级久久三级三级| 成年片色大黄全免费网站久久| 日韩美女网中文字幕免费看| 女人的天堂av在线观看| 欧美牲交a欧美在线欧美精品| 人摸人人人澡人人超碰手机版| 国产chinese男男激情| 欧美日韩国产精品爽爽| 国产日韩欧美懂色| 久久国产精品亚洲精品99| 中文字幕日本αv| 欧美一区二区三区在线激情 | 欧美一区二区三区高清不卡tv| 青青久操视频在线播放| 青青免费av观看| 久久五十路老妇丰满人妻精品| 中国av蜜臀一区二区三区| 国产精品男人的天堂999| 56av国产精品久久久久久久| x8x8成人免费| 亚洲视频一区中文字幕| 在线av资源网站| 国产中文字幕2020| 九色porny9l自拍| 精品一区二区三区中文字幕老牛| 女人被戳鸡鸡视频| 欧美日韩伦理三级av| 98精品视频在线播放| 黄色美网站在线观看污污污| 天天日天天干婷婷| 成人网片在线播放| 欧美一区二区三区高清不卡tv | 欧美日本高清视频99| 麻豆精品国产传媒av绿帽社| 久久艹日中文字幕| 久久精彩视频98| 精品视频国产激情| 国产一区熟女在线视频| 亚洲av在线观看在线观看| haose我爱av| 久久艹日中文字幕| 日本中文高清字幕网站| 在线观看一卡二卡| 国产情侣偷拍自拍| 亚洲免费黄色av网站| 欧美一区二区三区伦理片| 精品精品免费免费免费| 永久免费视频网站在线| 亚洲欧美国产色逼视频| 少妇床戏av蜜桃| 久久久久亚洲视频| 精品毛片久久久久久久久久久久 | 特黄特色大片免费播放器| 婷婷精彩视频在线精品看| 熟女人妻久久久一区二区| 国产在线观看播放视频| 欧美激情视频在线全球共享| 日本精品美女在线观看| 天天操操操操操操操| 视频一区二区免费观看| 夜夜夜噜噜噜精品视频| 中文字幕在线观看视频中文| 在线精品国自产拍| 黄色成人免费大片| 来个网站午夜激情| 三级伦理一区二区三区| 欧美三级日韩视频| 欧美黑人精品在线免费观看视频 | 亚洲ww在线观看| 蜜臀av在线一区二区三区|