中文字幕av资源在线观看,亚洲天堂日韩88,亚洲天堂久久激情,成人在线观看超碰,国产亚洲精品成人av丝袜,中文字幕人妻熟女色爱,久久中文字幕人妻16,亚洲天堂午夜精品,欧美激情亚洲av

咨詢電話:13699145010
article技術(shù)文章
首頁 > 技術(shù)文章 > 材料的絕緣特性與介質(zhì)的電氣強(qiáng)度

材料的絕緣特性與介質(zhì)的電氣強(qiáng)度

更新時間:2024-07-18      點擊次數(shù):4399

電介質(zhì)在電氣設(shè)備中是作為絕緣材料使用的,按其物質(zhì)形態(tài),可分為氣體介質(zhì)、液體介質(zhì)和固體介質(zhì)。不過在實際絕緣結(jié)構(gòu)中所采用的往往是由幾種電介質(zhì)聯(lián)合構(gòu)成的組合絕緣,例如電氣設(shè)備的外絕緣往往由氣體介質(zhì)()和固體介質(zhì)(絕緣)聯(lián)合組成,而內(nèi)絕緣則較多地固體介質(zhì)和液體介質(zhì)聯(lián)合組成:

一切電介質(zhì)的電氣強(qiáng)度都是有限的,超過某種限度,電介質(zhì)就會逐步喪失其原有的絕緣性能,甚至演變成導(dǎo)體。

在電場的作用下,電介質(zhì)中出現(xiàn)的電氣現(xiàn)象可分為兩大類:

1)在弱電場(當(dāng)電場強(qiáng)度擊穿場強(qiáng)小得多),主要是化、電導(dǎo)、介質(zhì)損耗等;

2)在強(qiáng)電場(當(dāng)電場強(qiáng)度等于或大于放電起始場強(qiáng)或擊穿場強(qiáng)),主要有放電、閃絡(luò)、擊穿等。



1.1 放電的基本物理過程

絕大多數(shù)電氣設(shè)備都在不同程度上以不同的形式利用氣體介質(zhì)作為絕緣材料。大自然為我們免費提供了一種相當(dāng)理想的氣體介質(zhì)空氣。架空輸電線路各相導(dǎo)線之間、導(dǎo)線與地線之間、線與桿塔之間的絕緣都利用了空氣,高壓電氣設(shè)備的外絕緣也利用空氣。

在空氣斷路器中,壓縮空氣被用作絕緣媒質(zhì)和火弧煤質(zhì),在某些類型的高壓電纜(充氣電)和高壓電容器中,特別是在現(xiàn)代的氣體絕緣組合電(GIS)中,更采用壓縮的高電氣強(qiáng)度(SF6)作為絕緣

假如氣體中不存在帶電粒子,氣體是不導(dǎo)電的。但實際上,由于外界電離因子(宇宙射線和地下放射性物質(zhì)的高能輻射線)的作用,地面大氣層的空氣中不可避免地存在一些帶電粒(每立方厘米體積內(nèi)5001000對正、負(fù)帶),但即使如此,空氣仍不失為相當(dāng)理想的電介質(zhì)(電導(dǎo)很小、介質(zhì)損耗很小,且仍有足夠的電氣強(qiáng)度)。

在一定條件下,氣體中也會出現(xiàn)放電現(xiàn)象,甚至喪失其作為電介質(zhì)而具有的絕緣特性,在本課程中,研究氣體放電的主要目的為;了解氣體在高電壓(強(qiáng)電)的作用下逐步由電介質(zhì)演變成導(dǎo)體的物理過程;掌握氣體介質(zhì)的電氣強(qiáng)度及其提高的方法。

1.1.1質(zhì)點的產(chǎn)生和消失

為了說明氣體放電過釋,首先必須了解氣體中帶電粒子產(chǎn)生、運動、消失的過程和條件。

1.氣體中的運動

(1)自由行程長度

當(dāng)氣體中存在電場時,其中的帶電粒子將具有復(fù)雜的運動軌,它們一方面與中性的氣體粒子(原子或分)一樣,進(jìn)行著混亂熱運動,另一方面又將沿著電場作定向漂(1-1)。

img1 

各種粒子在氣體中運動時都會不斷地互相碰撞,任一粒子在1cm的行程中所遭遇的碰撞次數(shù)與氣體分子的半徑和密度有關(guān)。單位行程中的碰撞次數(shù)Z的倒數(shù)入即為該粒子的平均自由行程長度。

實際的自行程長度是一個隨機(jī)量,并具有很大的分散性。粒子的自由行程長度等于或大于某一距離x的概率為

img2 

可見,實際自由行程長度等于或大于平均自由行程長度的概率為36.8%,由于電子的半徑或體積要比離子或氣體分子小得多,所以電子的平均自由行程長度要比離子或氣體分子大得多,由氣體動力學(xué)可知,電子的平均自由行程長度為

img3 

式中  r氣體分子的半徑;

N氣體分子的密度。

出于img4代人式1-2)即

img5 

式中p(Pa);

T(K);

k玻爾茲曼常數(shù)k=1.38×10-23J/K。

在大氣壓和常溫下,電子在空氣中的平均自由行程長度的數(shù)量級為10-5cm。

(2)帶電粒子的遷移率

帶電粒子雖然不可避免地要與氣體分子不斷地發(fā)生碰撞,但在電場力的驅(qū)動下,仍將沿著電場方向漂移,其速度v與場強(qiáng)E成正比,其比例系數(shù)k=v/E稱為遷移率,它表示該帶電粒子在單位場強(qiáng)(1V/m)下沿電場方問的漂移速度。

由于電子的平均自由行程長度比離子大得多,而電子的質(zhì)量比離子小得多,更易加速,所以電子的遷移率遠(yuǎn)大于離子。

(3)擴(kuò)散

氣體中帶電粒子和中性粒子的運動還與粒子的濃度有關(guān)。在熱運動的過程中,粒子會從濃度較大的區(qū)域運動到濃度較小的區(qū)域,從而使每種粒子的濃度分布均勻化,這種物理過程稱為擴(kuò)散。氣壓越低或溫度越高,則擴(kuò)散進(jìn)行得越快。電子的熱運動速度大、自由行程長度大,所以其擴(kuò)散速度也要比離子快得多。

2. 帶電粒子的產(chǎn)生

產(chǎn)生帶電粒子的物理過程稱為電離,它是氣體放電的首要前提。

氣體原子中的電子沿著原子核周圍的圓形或橢圓形軌道,圍繞帶止電的原子核旋轉(zhuǎn)。在常態(tài)下,電子處于離核最近的軌道上,因為這樣勢能最小。當(dāng)原子獲得外加能量時,一個或若干個電子有可能轉(zhuǎn)移到離核較遠(yuǎn)的軌道上去,這個現(xiàn)象稱為激勵,產(chǎn)生激勵所需的能量(激勵)等于該軌道和常態(tài)軌道的能級差。激勵狀態(tài)存在的時間很(例如,10-8s),電子將自動返回常態(tài)軌道上去,這時產(chǎn)生激勵時所吸收的外加能量將以輻射()的形式放出。如果原子獲得的外加能量足夠大,電子還可躍遷至離核更遠(yuǎn)的軌道上去,甚至擺脫原子核的約束而成為自由電子,這時原來中性的原子發(fā)生了電離,分解成兩種帶電粒電子和正離子,使基態(tài)原子或分子中結(jié)合最松弛的那個電子電離出來所需的最小能量稱為電離能。

1-1列出了某些常見氣體的激勵能和電離能之值,它們通常以電子(eV)表示。由于電子的電荷qe恒等1.6×10-19C,所以有時也可以采用激勵電位(V)和電離電Ui(V)來代替激勵能和電離能,以便在計算中排qe值。

1-1              某些氣體的激勵能和電離能

氣體

激勵We/Ev

電離Wi/eV

氣體

激勵We/Ev

電離Wi/eV

N2

 6.1

  15.6

CO2

 10.0

  13.7

O2

 7.9

 12.5

H2O

 7.6

 12.8

H2

 11.2

 15.4

SF6

 6.8

 15.6

引起電離所需的能量可通過不同的形式傳遞給氣體分子,諸如光能、熱能、機(jī)械()能等,對應(yīng)的電離過程稱為光電離、熱電離、碰撞電離等。

(1)光電離

頻率為v的光子能量為

img6 

式中h普朗克常數(shù)h=6.63×10-34J·s=4.13×10-15eV·s。

發(fā)生空間光電離的條件應(yīng)為

img7 

或者

img8 

式中λ光的波(m)

C光速,c=3×108m/s;

Wi氣體的電離(eV)

通過式(1-5)的計算可知,各種可見光都不能使氣體直接發(fā)生光電離,紫外線也只能使少數(shù)幾種電離能特別小的金屬蒸氣發(fā)生光電離,只有那些波長更短的高能輻射(例如,X射線、γ射線)才能使氣體發(fā)生光電離。

應(yīng)該指出:在氣體放電中,能導(dǎo)致氣體光電離的光源不僅有外界的高能輻射線,而且還可能是氣體放電本身,例如在后面將要介紹的帶電粒子復(fù)合的過程中,就會放出輻射能而引起新的光電離。

(2)熱電 

在常溫下,氣體分子發(fā)生熱電離的概率極小。氣體中已發(fā)生電離的分子數(shù)與總分子數(shù)的比值m稱為該氣體的電離度。圖1-2是空氣的電離m與溫 T的關(guān)系曲線,可以看出:只有在溫度超過10000K(例如,電弧放電的情),才需要考慮熱電離;而在溫度達(dá)20000K左右時,幾乎全部空氣分子都已處于熱電離狀態(tài)。

img9 

(3)碰撞電離

在電場中獲得加速的電子在和氣體分子碰撞時,可以把自己的動能轉(zhuǎn)給后者而引起碰撞電離。

電子在電場強(qiáng)度E的電場中移過x的距離時所獲得的動能為

img10 

式中m電子的質(zhì)量;

qe電子電荷量。

如果 W等于或大于氣體分子的電離能Wi,該電子就有足夠的能量去完成碰撞電離。由此可以得出電子引起碰撞電離的條件應(yīng)為

img11 

電子為造成碰撞電離而必須飛越的最小距離img12 (式中Ui為氣體的電離電位,在數(shù)值上與eV為單位Wi)xi的大小取決于場強(qiáng)E,增大氣體中的場強(qiáng)將使xi值減小,可見提高外加電壓將使碰撞電離的概率和強(qiáng)度增大。

碰撞電離是氣體中產(chǎn)生帶電粒子的最重要的方式。應(yīng)該強(qiáng)調(diào)的是,主要的碰撞電離均由電子完成,離子碰撞中性分子并使之電離的概率要比電子小得多,所以在分析氣體放電發(fā)展過程時,往往只考慮電子所引起的碰撞電離。

(4)電極表面的電離

除了前面所說的發(fā)生在氣體中的空間電離外,氣體中的帶電粒子還可能來自電極表面上的電離。

電子從金屬表面逸出需要一定的能量,稱為逸出功。各種金屬的逸出功是不同的,見表1-2。

 1-2                     某些金屬的逸出功

金屬

逸出/eV

金屬

逸出/eV

金屬

逸出/eV

1.8

3.9

氧化銅

5.3

3.1

3.9

 

 

將表1-21-1作比較,就可看出:金屬的逸出功要比氣體分子的電離能小得多,這表明,金屬表面電離比氣體空問電離更易發(fā)生。在不少場合,陰極表面電(也可稱電子發(fā))在氣體放電過程中起著相當(dāng)重要的作用。隨著外加能批形式的不同,陰極的表面電離可在下列情況下發(fā)生:

1)正離子撞擊陰極表面:正離子所具有的能量為其動能與勢能之和,其勢能等于氣體的電離Wi。通常正離子的動能不大,如忽略不計,那么只有在它的勢能等于或大于陰極材料的逸出功的兩倍時,才能引起陰極表面的電子發(fā)射,因為首先要從金屬表面拉出一個電子,使之和正離子結(jié)合成一個中性分子,正離子才能釋放出全部勢能而引起更多的電子從金病表向逸出。比較一下1-11-2中的數(shù)據(jù),不難看出,這個條件是可能滿足的。

2)光電子發(fā)射:高能輻射線照射陰極時,會引起光電子發(fā)射,其條件是光子的能批應(yīng)大于金屬的逸出功。由于金屬的逸出功要比氣體的電離能小得多,所以紫外線已能引起陰極的表面電離。

3)熱電子發(fā)射:金屬中的電子在高溫下也能獲得足夠的動能而從金屬表面逸出,稱為熱電子發(fā)射。在許多電子和離子器件中常利用加熱陰極來實現(xiàn)電子發(fā)射。

4)強(qiáng)場發(fā)(冷發(fā)):當(dāng)陰極表面附近空間存在很強(qiáng)的電場(106V/cm數(shù)量),也能使陰極發(fā)射電子。一般常態(tài)氣隙的擊穿場強(qiáng)遠(yuǎn)小于此值,所以在常態(tài)氣隙的擊穿過程中不受強(qiáng)場發(fā)射的影響;但在高氣壓下、特別是在壓縮的高電氣強(qiáng)度氣體的擊穿過程中,強(qiáng)場發(fā)射也可能會起一定的作用;而在真空的擊穿過程中,它更起著決定性作用。

3.負(fù)離子的形成

當(dāng)電子與氣體分子碰撞時,不但有可能引起碰撞電離而產(chǎn)生出正離子和新電子,而且也可能會發(fā)生電子與中性分子相結(jié)合而形成負(fù)離子的情況,這種過程稱為附著。

某些氣體分子對電子有親合性,因而在它們與電子結(jié)合成負(fù)離子時會放出能量(電子親合),而另一些氣體分子要與電子結(jié)成負(fù)離子時卻必須吸收能量。前者的親合能為正值,這些易于產(chǎn)生負(fù)離子的氣體稱為電負(fù)性氣體。親合性越強(qiáng)的氣體分子越易俘獲電子而變成負(fù)離子。

應(yīng)該指出:負(fù)離子的形成并沒有使氣體中的帶電粒子數(shù)改變,但卻能使自由電子數(shù)減少,因而對氣體放電的發(fā)展起抑制作用??諝庵械难鯕夂退肿訉﹄娮佣加幸欢ǖ挠H合性,但還不是太強(qiáng);而后面將要介紹的某些特殊的電負(fù)性氣體(例如SF6)對電子具有很強(qiáng)的親合性,其電氣強(qiáng)度遠(yuǎn)大于一般氣體,因而被稱為高電氣強(qiáng)度氣體。

4.帶電粒子的消失

氣體中帶電粒子的消失可有下述幾種情況:

1)帶電粒子在電場的驅(qū)動下作定向運動,在到達(dá)電極時,消失于電極上而形成外電路中的電流;

2)帶電粒子因擴(kuò)散現(xiàn)象而逸出氣體放電空間;

3)帶電粒子的復(fù)合。

當(dāng)氣體中帶異號電荷的粒子相遇時,有可能發(fā)生電荷的傳遞與中和,這種現(xiàn)象稱為復(fù)合,它是與電離相反的一種物理過程。復(fù)合可能發(fā)生在電子和正離子之間,稱為電子復(fù)合,其結(jié)果是產(chǎn)生了一個中性分子;復(fù)合也可能發(fā)生在正離子和負(fù)離子之間,稱為離子復(fù)合,其結(jié)果是產(chǎn)生了兩個中性分子。上述兩種復(fù)合都會以光子的形式放出多余的能量,這種光輻射在一定條件下能導(dǎo)致其他氣體分子的電離,使氣體放電出現(xiàn)跳躍式的發(fā)展。

帶電粒子的復(fù)合強(qiáng)度與正、負(fù)帶電粒子的濃度有關(guān),濃度越大,則復(fù)合也進(jìn)行得越激烈。每立方厘米的常態(tài)空氣中經(jīng)常存在著500~1000對正、負(fù)帶電粒子,它們是外界電離因(高能輻射)使空氣分子發(fā)生電離和產(chǎn)生出來的正、負(fù)帶電粒子又不斷地復(fù)合所達(dá)到的一種動態(tài)平衡。

1.1.2電子崩與湯遜理論

1.電子崩

氣體放電的現(xiàn)象和發(fā)展規(guī)律與氣體的種類、氣壓的大小、氣隙中的電場型式、電源容量等一系列因素有關(guān)。無論何種氣體放電,都有一個電子碰撞電離導(dǎo)致電子崩的階段,它在所加電壓(電場強(qiáng)度)達(dá)到某數(shù)(例如,1-3UB)時開始出現(xiàn)。

img13 

前面已經(jīng)提到,各種高能輻射線(外界電離因子)會引起陰極的表面光電離和氣體中的空間光電離,從而使空氣中存在一定濃度的帶電粒子。因而在氣隙的兩端電極上施加電壓時,即可檢測到微小的電流。1-3表示實驗所得的平板電極(均勻電)氣體中的電流與所加電壓U的關(guān)(伏安特)曲線。在曲線OA, IU的提高而增大,這是由于電極空間的帶電粒子向電極運動的速度加快而導(dǎo)致復(fù)合數(shù)的減少所致。當(dāng)電壓接近時,電流趨于飽和值Ia,因為這時由外界電離因子所產(chǎn)生的帶電粒子幾乎能全部抵達(dá)電極,所以電流值僅取決于電離因子的強(qiáng)弱而與所加電壓的大小無關(guān)。飽和電I0。之值很小,在沒有人工照射的情況下,電流密度的數(shù)量級僅10-19A/cm2,即使采用石英燈照射陰極,其數(shù)量級也不會超102A/cm,可見這時氣體仍然處于良好的絕緣狀態(tài)。但當(dāng)電壓提高UB時,電流又開始隨電壓的升高而增大,這是由于氣隙中開始出現(xiàn)碰撞電離和電子崩。電子崩的形成和帶電粒子在電子崩中的分布如1-4所示,設(shè)外界電離因子在陰極附近產(chǎn)生了一個初始電子,如果空間的電場強(qiáng)度足夠大,該電子在向陽極運動時就會引起碰撞電離,產(chǎn)生出一個新電子,初始電子和新電子繼續(xù)向陽極運動,又會引起新的碰撞電離,產(chǎn)生出更多的電子。依此類推,電子數(shù)將按幾何級數(shù)不斷增多,像雪崩似地發(fā)展,因而這種急劇增大的空間電子流被稱為電子崩。為了分析碰撞電離和電子崩所引起的電流,需要引入一個系數(shù)電子碰撞電離系數(shù)α,它表示一個電子沿電場方向運1cm的行程中所完成的碰撞電離次數(shù)平均值。

在圖1-5所示的平板電(均勻電)氣隙中,設(shè)外界電離因子每秒鐘使陰極表面發(fā)射出來的初始電子數(shù)為n0于碰撞電離和電子崩的結(jié)果,在它們到達(dá)x處時,電子數(shù)已增加為n,n個電子dx的距離中又會產(chǎn)生dn個新電子。根據(jù)碰撞電離系數(shù)α的定義,可得

img14 

分離變數(shù)并積分,可得

img15 

img16img17 

對于均勻電場來說,氣隙中各點的電場強(qiáng)度相同,α值不隨x而變化,所以上式可寫成

img18 

抵達(dá)陽極的電子數(shù)應(yīng)為

img19 

式中 d極間距離。

途中新增加的電子數(shù)或正離子數(shù)應(yīng)為

img20 

將式(1-12)的等號兩側(cè)乘以電子的電荷q,即得到電流關(guān)系式為

img21 

其中,I0=n0qe,即1-3中由外界電離因子所造成的飽和電流I0

(1-13)表明:雖然電子崩電流按指數(shù)規(guī)律隨極間距離d而增大,但這時放電還不能自持,因為一旦除去外界電離因(I0=0),I0即變?yōu)榱恪?/span>

下面再來探討一下碰撞電離系數(shù)α。

如果電子的平均自由行程長度為λe,則在它運動1cm的距離內(nèi)將與氣體分子發(fā)1/λe。次碰撞,不過并非每次碰撞都會引起電離,前面已經(jīng)指出:只有電子在碰撞前已在電場方向運動了img22的距離時,才能積累到足以引起碰撞電離的動(它等于氣體分子的電離能Wi),由(1-1)可知,實際自由行程長度等于或大于xi的概率為img23。,所以它也就是碰撞時能引起電離的概率。根據(jù)碰撞電離系數(shù)α的定義,即可寫出

img24 

由式(1-3)可知,電子的平均自由行程長度λe與氣T成正比、與氣壓p成反比,即

img25 

當(dāng)氣溫T不變時,(1-14)即可改寫為

img26 

由式(1-16)不難看出;電場強(qiáng)度E增大時α急劇增大;p(λe)p(λe)α值都比較小。這是因為λe(高氣)時,單位長度上的碰撞次數(shù)很多,但能引起電離的概率很小,反之,當(dāng)λe(低氣壓或真)時,雖然電子很易積累到足夠的動能,但總的碰撞次數(shù)太少,因α也不大??梢娫诟邭鈮汉透哒婵盏臈l件下,氣隙都不易發(fā)生放電現(xiàn)象,即具有較高的電氣強(qiáng)度。

2.湯遜理論

由前述已知,只有電子崩過程是不會發(fā)生自持放電的。要達(dá)到自持放電的條件,必須在氣隙內(nèi)初始電子崩消失前產(chǎn)生新的電子(二次電)來取代外電離因素產(chǎn)生的初始電子。實驗表明,二次電子的產(chǎn)生機(jī)制與氣壓和氣隙長度的乘(pd)有關(guān)。pd值較小時,自持放電的條件可用湯遜理論來說明;pd值較大時,則要用流注理論來解釋。對于空氣來說,這一pd值的臨界值大約26kPa·mm。湯遜理論認(rèn)為二次電子的來源是正離子撞擊陰極,使陰極表面發(fā)生電子逸出。引入的γ系數(shù)表示每個正離子從陰極表面平均釋放的白由電子數(shù)。

(1)γ過程與自持放電條件

由于陰極材料的表面逸出功比氣體分子的電離能小很多,因而正離子碰撞陰極較易使陰極釋放出電子。此外正負(fù)離子復(fù)合時,以及分子由激勵態(tài)躍遷回正常態(tài)時,所產(chǎn)生的光子到達(dá)陰極表面都將引起陰極表面電離,統(tǒng)稱為γ過程。為此引入表面電離系數(shù)γ設(shè)外界光電離因素在陰極表面產(chǎn)生了一個自由電子,此電子到達(dá)陽極表面時由于發(fā)α過程,電子總數(shù)增eαd個。因在α系數(shù)進(jìn)行討論時已假設(shè)每次電離撞出一個正離子,故電極空間共eαd-1離子。按照系數(shù)γ的定義,eαd-1個正離子在到達(dá)陰極表面時可撞出γ(eαd-1)個新電子,這些電子在電極空間的碰撞電離同樣又能產(chǎn)生更多的正離子,如此循環(huán)下去,這樣的重復(fù)過程見表1-3。

 1-3              電極空間及氣體間隙碰撞電離發(fā)展示意過程

位置周期

陰極表面

氣體間隙中

陽極表面

1周期

一個電子逸出

形成eαd-1個正離子

eαd個電子進(jìn)入

2周期

γ(eαd-1)個電子逸出

形成γ(eαd-1)個正離子

γ(eαd-1)eαd個電子進(jìn)入

3周期

γ2(eαd-1)2個電子逸出

形成γ2(eαd-1)2個正離子

γ2(eαd-1)2eαd個電子進(jìn)入

陰極表面發(fā)射一個電子,最后陽極表面將進(jìn)入Z個電子。

Z= eαd+γ(eαd-1) eαd+γ2(eαd-1)2eαd+...            

當(dāng)γ(eαd-1)<1時,此級數(shù)收斂為

Z= eαd/ [1-γ(eαd-1)]

如果單位時間內(nèi)陰極表面單位面積有n0個起始電子逸出,那么達(dá)到穩(wěn)定狀態(tài)后,單位時間進(jìn)入陽極單位面積的電子數(shù)na就為

              na= n0 eαd/ [1-γ(eαd-1)]                  (1-17)

因此,回路中的電流應(yīng)為

             I=I0 eαd/ [1-γ(eαd-1)]                     (1-18)

式中I0由外電離因素決定的飽和電流。

實際上eαd >>1,故(1-18)可以簡化為

I=I0 eαd/ (1-γeαd)                     (1-19)

將式(1-19)(1-12)相比較,由此可見,γ過程使電流的增長比指數(shù)規(guī)律還快。

當(dāng)d較小或電場較弱時,γ(eαd-1)<1,(1-18)(1-19)恢復(fù)為(1-12),表明此時γ過程可忽略不計。

γ值同樣可根據(jù)回路中的電流I和電距離d之間的實驗曲線決定

img27 

如圖1-6所示,先從d較小時的直線部分決定α,再從電流增加更快時的部分決定γ。 

img28 

在式(1-18)、(1-19)中,當(dāng)γ(eαd-1)1  γeαd1時,似乎電流將趨于無窮大。電流當(dāng)然不會無窮大,實際上γ(eαd-1)=1時,意味著間隙被擊穿,電流I的大小將由外回路決定。這時即使。I01I仍能維持一定數(shù)值。即γ(eαd-1)=1時,放電可以不依賴外電離因素,而僅由電壓即可自動維持。

因此,自持放電條件為

                    γ(eαd-1)=1γeαd =1                           1-21

此條件物理概念十分清楚,即一個電子在自己進(jìn)入陽極后可以αγ過程在陰極上又產(chǎn)生一個新的替身,從無需外電離因素,放電即可繼續(xù)進(jìn)行下去。

                  γeαd=1αd=ln1/γ                              (1-22)

鐵、銅、鋁在空氣中的γ值分別0.02、0.025、0.035,因此一般img29。由于γ電極材料的逸出功有關(guān),因而湯遜放電顯然與電極材料及其表面狀態(tài)有關(guān)。

(2)湯遜放電理論的適用范圍

湯遜理論是在低氣壓、pd較小的條件下在放電實驗的基礎(chǔ)上建立的。pd過小或過大,放電機(jī)理將出現(xiàn)變化,湯遜理論就不再適用了。pd過小時,氣壓極(d過小實際上是不可能)d/λ極小,λ遠(yuǎn)大于d,碰撞電離來不及發(fā)生,擊穿電壓似乎應(yīng)不斷上升,但實際上,電壓U上升到一定程度后,場致發(fā)射將導(dǎo)致擊穿,湯遜的碰撞電離理論不再適用,擊穿電壓將不再增加。pd過大時,氣壓高或距離大,這時氣體擊穿的很多實驗現(xiàn)象無法全部在湯遜理論范圍內(nèi)給予解釋放電外形:高氣壓時放電外形具有分支的細(xì)通道,而按照湯遜放電理論,放電應(yīng)在整個電極空間連續(xù)進(jìn)行,例如輝光放電;放電時間:根據(jù)出現(xiàn)電子崩經(jīng)幾個循環(huán)后完成擊穿的過程,可以計算出放電時間,在低氣壓下的計算結(jié)果與實驗結(jié)果比較一致,高氣壓下的實測放電時間比計算值小得多;擊穿電壓pd較小時擊穿電壓計算值與實驗值一致,pd較大時不一致;陰極材料:低氣壓下擊穿電壓與電極材料有關(guān);高氣壓下間隙擊穿電壓與電極材料無關(guān)。

因此,通常認(rèn)為,pd>26.66kPa·cm(200cm·mmHg)時,擊穿過程將發(fā)生變化,湯遜理論的計算結(jié)果不再適用,但其碰撞電離的基本原理仍是普遍有效的。

1.1.3巴申定律及其適用范圍

1.巴申定律

早在湯遜理論出現(xiàn)之前,巴申(Paschen)1889年從大量的實驗中總結(jié)出了擊穿電壓ubpd的關(guān)系曲線,稱為巴申定律,即

                          ub=fpd                         1-23

1-7給出了空氣間隙的ubpd的關(guān)系曲線。從圖中可見,首先,ub并不僅僅由ub決定,而是pd的函數(shù);其次,ub不是pd的單調(diào)函數(shù),而U形曲線,有極小值。不同氣體,其巴申曲線上的低擊穿電壓Ubmin,以及使ub=Ubminpd(pd)min各不相同。對空氣,ub的極小值Ubmin325V。此極小值出現(xiàn)在pd=0.55cm·mmHg時,即ub的極小值不是出現(xiàn)在常壓下,而是出現(xiàn)在低氣壓,即空氣相對密度很小的情況下。

img30 

1-4給出了在幾種不同氣體下實測得到的巴申曲線上的低擊穿電壓Ubmin,以及使ub=Ubminpd(pd)min

 1-4               幾種氣體間隙Ubmin(pd)min

氣體種類

空氣

N2

O2

H2

SF6

CO2

Ne

He

 Ubmin/V

 325

240

450

230

507

420

245

155

(pd)min/cm·mmHg

 0.55

0.65

0.7

1.05

0.26 

 0.57

4.0

4.0

注:1mmHg=1.33322×102Pa。

2.巴中定律適用范圍

巴申定律是在氣體溫度不變的情況下得出的。對于氣溫并非恒定的情況,式(1-23)應(yīng)改寫為

           Ub=F(δd)                                (1-24)

 δ氣體密度與標(biāo)準(zhǔn)大氣條(Ps=101.3kPa,Ts=293K)下密度之比,即

img31 

式中  p——擊穿實驗時氣壓kPa)

t實驗時溫(K)。

1.1.4 氣體放電的流注理論

電壓技術(shù)所面對的往往不是前面所說的低氣壓、短氣隙的情況,而是高氣壓(101.3kPa或更)、長氣隙的情[pd26.66kPa·cm(200mmHg·cm)]。前面介紹的湯遜理論是在氣壓較(小于大氣)、氣隙相對密度與極間距離的乘積δd較小的條件下,進(jìn)行放電試驗的基礎(chǔ)上建立起來的。以大自然中最宏偉的氣體放電現(xiàn)雷電放電為例,它發(fā)生在兩塊雷云之間或雷云與大地之間,這時不存在金屬陰極,因而與陰極上的γ過程和二次電子發(fā)射根本無關(guān)。氣體放電的流注理論也是以實驗為基礎(chǔ)的,它考慮了高氣壓、長氣隙情況下不容忽視的若干因素對氣體放電過程的影響,其中包括;電離出來的空間電荷會使電場畸變以及光子在放電過程中的作用(空間光電離和陰極表面光電)。這個理論認(rèn)為電子的撞擊電離和空間電離是自持放電的主要因素,并充分注意到空間電荷對電場畸變的作用。流注理論目前主要還是對放電過程做定性描述,定量的分析計算還不夠成熟。下面作簡要介紹。

1. 空間電荷對原有電場的影響

如圖1-4所示,電子崩中的電子由于其遷移率遠(yuǎn)大于正離子,所以絕大多數(shù)電子都集中在電子崩的頭部,而正離子則基本上停留在產(chǎn)生時的原始位置上,因而其濃度是從尾部向頭部遞增的,所以在電子崩的頭部集中著大部分正離子和幾乎全部電子(1-8a所示)。這些空間電荷在均勻電場中所造成的電場畸變,如圖1-8b所示??梢娫诔霈F(xiàn)電子崩空間電荷之后,原有的均勻場強(qiáng)E0發(fā)生了很大的變化,在電子崩前方和尾部處的電場都增強(qiáng)了,而在這兩個強(qiáng)場區(qū)之間出現(xiàn)了一個電場強(qiáng)度很小的區(qū)域,但此處的電子和正離子的濃度卻最大,因而是一個十分有利于完成復(fù)合的區(qū)域,結(jié)果是產(chǎn)生強(qiáng)烈的復(fù)合并輻射出許多光子,成為引發(fā)新的空間光電離的輻射源。

img32 

2.空間光電離的作 

湯遜理論沒有考慮放電本身所引發(fā)的空間光電離現(xiàn)象,而這一因素在高氣壓、長氣隙的擊穿過程中起著重要的作用。上面所說的初始電子崩(簡稱初)頭部成為輻射源后,就會向氣隙空間各處發(fā)射光子而引起光電離,如果這時產(chǎn)生的光電子位于崩頭前方和崩尾附近的強(qiáng)場區(qū)內(nèi),那么它們所造成的二次電子崩將以大得多的電離強(qiáng)度向陽極發(fā)展或匯入崩尾的正離子群中。這些電離強(qiáng)度和發(fā)展速度遠(yuǎn)大于初始電子崩的新放電區(qū)(二次電子)以及它們不斷匯入初崩通道的過程被稱為流注。

流注理論認(rèn)為:在初始階段,氣體放電以碰撞電離和電子崩的形式出現(xiàn),但當(dāng)電子崩發(fā)展到一定程度后,某一初始電子崩的頭部積聚到足夠數(shù)量的空間電荷,就會引起新的強(qiáng)烈電離和二次電子崩,這種強(qiáng)烈的電離和二次電子崩是由于空間電荷使局部電場大大增強(qiáng)以及發(fā)生空間光電離的結(jié)果,這時放電即轉(zhuǎn)入新的流注階段。流注的特點是電離強(qiáng)度很大和傳播速度很快(超過初崩發(fā)展速10倍以),出現(xiàn)流注后,放電便獲得獨立繼續(xù)發(fā)展的能力,而不再依賴外界電離因子的作用,可見這時出現(xiàn)流注的條件也就是自持放電條件。1-9表示初崩頭部放出的光子在崩頭前方和崩尾后方引起空間光電離并形成二次崩以及它們和初崩匯合的流注過程。二次崩的電子進(jìn)入初崩通道后,便與正離子群構(gòu)成了導(dǎo)電的等離子通道,一旦等離子通道短接了兩個電極,放電即轉(zhuǎn)為火花放電或電弧放電。

出現(xiàn)流注的條件是初崩頭部的空間電荷數(shù)值必須達(dá)到某一臨界值。對均勻電場來說,其自持放電條件應(yīng)為

eαd=常數(shù)

                              αd=數(shù)                    (1-26

實驗研究所得出的常數(shù)值為

αd20

或者

eαd108                     1-27

可見初崩頭部的電子數(shù)要達(dá)到108時。放電才能轉(zhuǎn)為自(出現(xiàn)流)。如果電極間所加電壓正好等于自待放電起始電壓U0,那就意味著初崩要跑完整個氣隙,其頭部才能積聚到足夠的電子數(shù)而引起流注,這時的放電過程如1-10所示。其中1-10a表示初崩跑完整個氣隙后引發(fā)流注;1-10b表示出現(xiàn)流注的區(qū)域從陽極向陰極方向推移;1-10c為流注放電所產(chǎn)生的等離子通道短接了兩個電極,氣隙被擊穿。

img33img34 

如果所加電壓超過了自持放電起始電壓U,那么初崩不需要跑完整個氣隙,其頭部電子數(shù)即已達(dá)到足夠的數(shù)量,這時流注將提前出現(xiàn)并以更快的速度發(fā)展,如1-9所示。流注理論能夠說明湯遜理論所無法解釋的一系列在高氣壓、長氣隙情況下出現(xiàn)的放電現(xiàn)象,諸如:這時放電并不充滿整個電極空間,而是形成一條細(xì)窄的放電通道;有時放電通道呈曲折和分枝狀;實際測得的放電時間遠(yuǎn)小于正離子穿越極間氣隙所需的時間;擊穿電壓值與陰極的材料無關(guān)等。不過還應(yīng)強(qiáng)調(diào)指出:這兩種理論各適用于一定條件下的放電過程,不能用一種理論來取代另一種理論。pd值較小的情況下,初始電子不可能在穿越極間距離時完成足夠多的碰撞電離次數(shù),因而難以積聚到式(1-27)所要求的電子數(shù),這樣就不可能出現(xiàn)流注,放電的自持就只能依靠陰極上的γ過程了。

1.1.5 不均勻電場中的氣體放電

電氣設(shè)備中很少有均勻電場的情況。但對高壓電氣絕緣結(jié)構(gòu)中的不均勻電場還要區(qū)分兩種不同的情況,即稍不均勻電場和極不均勻電場。因為這兩種不均勻電場中的放電特點是不同的。全封閉組合電器(GIS)的母線筒和高壓實驗室中測量電壓用的球間隙是典型的稍不均勻電場;高壓輸電線之間的空氣絕緣和實驗室中高壓發(fā)生器的輸出端對墻的空氣絕緣則屬于極不均勻電場。

1.不均勻場和極不均勻場的特點與劃分

稍不均勻電場中放電的特點與均勻電場中相似,在間隙擊穿前看不到有什么放電的跡象。極不均勻電場中放電則不同,間隙擊穿前在高場強(qiáng)區(qū)(曲率半徑較小的電極表面附)會出現(xiàn)藍(lán)紫色的暈光,稱為電暈放電。剛出現(xiàn)電暈時的電壓稱為電暈起始電壓,隨著外施電壓的升高,電暈層逐漸擴(kuò)大,此時間隙中放電電流也會從微安級增大到毫安級,但從工程觀點看,間隙仍保持其絕緣性能。另外,任何電極形狀隨著極間距離的增大都會從稍不均勻電點看,間隙仍保持其絕緣性能。

通常用電場的不均勻系數(shù)f來判斷稍不均勻電場和極不均勻電場。有些會采用電場利用系數(shù)η來判斷,電場利用系數(shù)η,就是電場不均勻系數(shù)f的倒數(shù)。電場不均勻系數(shù)f的定義為間隙中最大場強(qiáng)Emax與平均場強(qiáng)EαV的比值。

img35 

img36 

  U間隙上施加的電壓

d電極間最短的絕緣距離。

而通常用電場不均勻系數(shù)可將電場不均勻程度劃分為;均勻電場,f=1;稍不均勻電場1f<2;極不均勻電場,f>4。

在稍不均勻電場中放電達(dá)到自持條件時發(fā)生擊穿,但因為f>1,此時間隙中平均場強(qiáng)比均勻場間隙要小,因此在同樣間隙距離時,稍不均勻場間隙的擊穿電壓比均勻場間隙要低。而在極不均勻場間隙中,自持放電條件即是電暈放電的起始條件。

2.極不均勻電場的電暈放電

1)電暈放電在極不均勻場中,當(dāng)電壓升高到一定程度后,在空氣間隙擊穿之前,小曲率電極(高場強(qiáng)電)附近會有薄薄的發(fā)光層,有點",在黑暗中看得較為真切。因此,這種放電現(xiàn)象稱為電暈放電。

電暈放電現(xiàn)象是由電離區(qū)放電造成的,電離區(qū)中的復(fù)合過程以及從激勵態(tài)恢復(fù)到正常態(tài)等過程都可能產(chǎn)生大量的光輻射。因為在極不均勻場中,只有大曲率電極附近很小的區(qū)域內(nèi)場強(qiáng)足夠高,電離系數(shù)α達(dá)到相當(dāng)高的數(shù)值,而其余絕大部分電極空間場強(qiáng)太低α值太小,得不到發(fā)展。因此,電暈層也就限于高場強(qiáng)電極附近的薄層內(nèi)。

電暈放電是極不均勻電場所有的一種自待放電形式。開始出現(xiàn)電暈時的電壓稱為電暈起始電壓Ue,而此時電極表面的場強(qiáng)稱為電暈起始場強(qiáng)Ee。

根據(jù)電暈層放電的特點,可分為兩種形式:電子崩形式和流注形式。當(dāng)起暈電極的曲率很大時,電暈層很薄,且比較均勻,放電電流比較穩(wěn)定,自持放電采取湯遜放電的形式,即出現(xiàn)電子崩式的電暈。隨著電壓升高,電暈層不斷擴(kuò)大,個別電子崩形成流注,出現(xiàn)放電的脈沖現(xiàn)象,開始轉(zhuǎn)入流注形式的電暈放電。若電極曲率半徑加大,則電暈一開始就很強(qiáng)烈,一出現(xiàn)就形成流注的形式。電壓進(jìn)一步升高,個別流注快速發(fā)展,出現(xiàn)刷狀放電,放電脈沖更強(qiáng)烈,最后貫通間隙,導(dǎo)致間隙擊穿。沖擊電壓下,電壓上升極快,因此電暈從一開始就具有流注的形式。爆發(fā)電暈時能聽到聲,看到光,嗅到臭氧味,并能測到電流。

2)電暈放電的起始場強(qiáng)。電暈屬極不均勻場的自持放電,原理上可由img37來計算起始電壓Ue,但計算十分復(fù)雜且結(jié)果并不準(zhǔn)確,所以實際上是由實驗總結(jié)出的經(jīng)驗公式來計算。電暈的產(chǎn)生主要取決于電極表面的場強(qiáng)。所以研究電暈起始場強(qiáng)及各種因素間的關(guān)系更直接,也更單純。

對于輸電線路的導(dǎo)線,在標(biāo)準(zhǔn)大氣壓下,其電暈起始場強(qiáng)及經(jīng)驗表達(dá)式為(此處及導(dǎo)線的表面場強(qiáng),交流電壓下用峰值表示,單位kV/cm)

img38 

式中r導(dǎo)線半(cm)。

(1-30)說明,導(dǎo)線半r越小,則反值越大。因r越小,則電場就越不均勻,也就是間隙中場強(qiáng)隨著其離導(dǎo)線的距離的增加而下降得更快,而碰撞電離系數(shù)α隨導(dǎo)線距離的增加而減小得越快。所以輸電線路起始電暈條件為

img39 

式中xC起始電暈層的厚度,x>xeα0。

可見電場越不均勻,要滿足式(1-31)時導(dǎo)線表面場強(qiáng)應(yīng)越高。式1-30)表明,當(dāng)rEc=30kV/cm。

而對于非標(biāo)準(zhǔn)大氣條件,則進(jìn)行氣體密度修正以后的表達(dá)式為

img40 

式中δ—— 氣體相對密度。

實際上導(dǎo)線表面并不光滑,所以對絞線來說,要考慮導(dǎo)線的表面粗糙系數(shù)m1。此外對于雨雪等使導(dǎo)線表面偏離理想狀態(tài)的因(雨水的水滴使導(dǎo)線表面形成突起的導(dǎo)電)可用系數(shù)m2加以考慮。此時(1-32)則寫為

img41 

理想光滑導(dǎo)線m1=1,絞m1=0.80.9,好天氣m2=1,壞天氣時可0.8估算。算得數(shù)值后就不難根據(jù)電極布置求得電暈起始電壓。例如,對于離地面高度h的單根導(dǎo)線可寫出

img42 

對于距離為d的兩根平行導(dǎo)(d>>r)則可寫出

img43 

3)電暈放電的危害、對策及其利用。電暈放電時發(fā)光并發(fā)"聲和引起化學(xué)反應(yīng)(如使大氣中氧變?yōu)槌?/span>),這些都需要能量,所以輸電線路發(fā)生電暈時會引起功率損耗。其次,電暈放電過程中,由于流注的不斷消失和重新產(chǎn)生會出現(xiàn)放電脈沖,形成高頻電磁波對無線電廣播和電視信號產(chǎn)生干擾。此外,電暈放電發(fā)出的噪聲有可能超過環(huán)境保護(hù)的標(biāo)準(zhǔn)。因此在建造輸電線路時必須考慮輸電線電暈問題,并采取措施以減小電暈放電的危害。解決的途徑是限制導(dǎo)線的表面場強(qiáng),通常是以好天氣時導(dǎo)線電暈損耗接近于零的條件來選擇架空導(dǎo)線的尺寸。對于超高壓和特高壓線路來說,要做到這一點,導(dǎo)線的直徑通常遠(yuǎn)大于按導(dǎo)線經(jīng)濟(jì)電流密度選取的值。當(dāng)然可以采用大直徑空心導(dǎo)線來解決這一矛盾,但好的解決辦法是采用分裂導(dǎo)線,即將每相線路分裂成幾根并聯(lián)的導(dǎo)線。分裂導(dǎo)線超過兩根時,通常布置在圓的內(nèi)接正多邊形的頂點。

分裂導(dǎo)線的表面最大場強(qiáng)不僅與導(dǎo)線直徑和分裂的根數(shù)有關(guān),而且與分裂導(dǎo)線間的距離D有關(guān),在某一最D值時,導(dǎo)線表面最大場強(qiáng)會出現(xiàn)一個極小值。如D過小,則分裂導(dǎo)線的分裂半徑太小,使分裂導(dǎo)線的優(yōu)點不能得到充分發(fā)揮;D過大時,則由于每相的子導(dǎo)線之間的電場屏蔽作用減弱,因此此時表面最大場強(qiáng)隨D的增加而增大。

另外,在選擇D值時并不只是以表面最大場強(qiáng)為最小條件作為設(shè)計依據(jù)的。使用分裂導(dǎo)線可以增大線路電容,減小線路電感,從而使輸電線路的傳輸能力增加。由D值增大有利于線路電感的減小,所以工程應(yīng)用中常D40-50cm。

電暈放電也有有利的一面。例如,在某些情況下,可以利用電暈放電產(chǎn)生的空間電荷來改善極不均勻場的電場分布,以提高擊穿電壓。而且,電暈放電在其他工業(yè)部門也獲得了廣泛的應(yīng)用,比如,在凈化工業(yè)廢氣的靜電除塵器和凈化水用的臭氧發(fā)生器以及靜電噴涂等,都是電暈放電在工業(yè)中應(yīng)用的例子。

4)極不均勻電場中放電的極性效應(yīng)。在電暈放電時,空間電荷對放電的影響已得到關(guān)注。由于高場強(qiáng)下電極極性的不同,空間電荷的極性也不同,對放電發(fā)展的影響也就不同,這就造成了不同極性的高場強(qiáng)電極的電暈起始電壓的不同以及間隙擊穿電壓的不同,稱為極性效應(yīng)。

例如,棒-板間隙是典型的極不均勻場。分布如下:

當(dāng)棒具有正極性時,間隙中出現(xiàn)的電子向棒運動,進(jìn)入強(qiáng)電場區(qū),開始引起電離現(xiàn)象而形成電子崩,如圖1-11a所示。隨著電壓的逐漸上升,到形成自持放電爆發(fā)電暈之前,在間隙中形成相當(dāng)多的電子崩。當(dāng)電子崩達(dá)到棒極后,其中的電子就進(jìn)入棒極,而正離子仍留在空間,相對來說緩慢地向板極移動。于是在棒極附近,積聚起正空間電荷,如圖1-11b所示。

img44 

這樣就減少了緊貼棒極附近的電場,而略微加強(qiáng)了外部空間的電場。因此,棒極附近的電場被削弱,難以形成流注,這就使得放電難以得到自持。

當(dāng)棒具有負(fù)極性時,陰極表面形成的電子立即進(jìn)入強(qiáng)電場區(qū),形成電子崩,如圖1-12a所示。當(dāng)電子崩中的電子離開強(qiáng)電場區(qū)后,電子就不再能引起電離,而以越來越慢的速度向陽極運動。一部分電子直接消失于陽極,其余的可為氧原子吸附形成負(fù)離子。電子崩中的正離子逐漸向棒極運動而消失于棒極,但由于其運動速度較慢,所以在棒極附近總是存在著正空間電荷。結(jié)果在棒極附近出現(xiàn)了比較集中的正空間電荷,而在其后則是非常分散的負(fù)空間電荷,如1-12b所示。

img45 

負(fù)空間電荷由于濃度小,對外電場的影響不大, 而正空間電荷將使電場畸變,棒極附近的電場得到增強(qiáng),因而自持放電條易于滿足、易于轉(zhuǎn)入流注而形成電暈放電。1-13是兩種極性下-板間隙的電場分布圖,其中曲1為外電場分布,曲2為經(jīng)過空間電荷畸變以后的電場。

img46 

已通過實驗證明,棒-板間隙中,棒為正極性時電暈起始電壓比負(fù)極性時略高。而極性效應(yīng)的另一個表現(xiàn),就是間隙擊穿電壓的不同。隨著電壓升高,在緊貼棒極附近,形成流注,產(chǎn)生電暈;以后在不同極性下,空間電荷對放電的進(jìn)一步發(fā)展所起的影響就和對電暈起始的影響相異了。

棒具有正極性時,若電壓足夠高,則棒極附近形成流注。由于外電場的特點,流注等離子體頭部具有正電荷。頭部的正電荷減少了等離子體中的電場,而加強(qiáng)了其頭部電場。流注頭部前方電場得到加強(qiáng),使得前方電場易于產(chǎn)生新的電子崩,其電子被吸引入流注頭部的正電荷區(qū)內(nèi),加強(qiáng)并延長了流注通道,其尾部的正離子則構(gòu)成了流注頭部的正電荷。流注及其頭部的正電荷使強(qiáng)電場區(qū)更向前移,好像將棒極向前延伸(當(dāng)然應(yīng)考慮到通道中的電壓),于是促進(jìn)了流注通道的進(jìn)一步發(fā)展,流注通道的頭部逐漸向陰極推進(jìn)。

當(dāng)棒具有負(fù)極性時,雖然在棒極附近容易形成流注,產(chǎn)生電暈,但此后流注向前發(fā)展卻困難得多了。電壓達(dá)到電暈起始電壓后,緊貼棒極的強(qiáng)電場同時產(chǎn)生了大量的電子崩,匯入圍繞棒極的正空間電荷。由于產(chǎn)生了許多電子崩,造成了擴(kuò)散狀分布的等離子體層,基于同樣的原因,負(fù)極性下非自持放電造成的正空間電荷也比較分散,這也有助于形成擴(kuò)散狀分布的等離子體層。這樣的等離子體層起著類似增大了棒極曲率半徑的作用,因此將使前沿電場受到削弱。繼續(xù)升高電壓時,在相當(dāng)一段電壓范圍內(nèi),電離只是在棒極和等離子體層外沿之間的空間發(fā)展,使得等離子體層逐漸擴(kuò)大和向前延伸。直到電壓很高,使得等離子體層前方電場足夠強(qiáng)后,才又將形成電子崩。電子崩的正電荷使得等離子體層前沿的電場進(jìn)一步加強(qiáng),形成了大量的二次電子崩。它們匯集起來后使得等離子體層向陽極推進(jìn)。由于同時形成許多電子崩,通道頭部也是呈擴(kuò)散狀的,通道前方電場被加強(qiáng)的程度也比正極性下要弱得多。

所以,在負(fù)極性下,通道的發(fā)展要困難得多。因此,負(fù)極性下的擊穿電壓應(yīng)較正極性時略高。

5)長間隙擊穿過程。在間隙距離較長時,存在某種新的、不同性質(zhì)的放電過程,稱為先導(dǎo)放電。長間隙放電電壓的飽和現(xiàn)象可由先導(dǎo)放電現(xiàn)象作出解釋。

間隙距離較長時(-板間隙距離大1m),在流注通道還不足以貫通整個間隙電壓的情況下,仍可能發(fā)展起擊穿過程。這時流注通道發(fā)展到足夠長度后,將有較多的電子從通道流向電極,通過通道根部的電子最多,于是流注根部溫度升高,出現(xiàn)了熱電離過程。這個具有熱電離過程的通道稱為先導(dǎo)通道。

正流注通道中的電子被陽極吸引,當(dāng)電子的濃度足夠高時,即有足夠的電流,流注通道就開始熱電離。熱電離引起了通道中帶電質(zhì)點濃度進(jìn)一步增大,即引起了電導(dǎo)的增加和電流的繼續(xù)加大。于是,流注通道變成了有高電導(dǎo)的等離子體通道。這時在先導(dǎo)通道的頭部又產(chǎn)生了新的流注,于是先導(dǎo)不斷向前推進(jìn)。

先導(dǎo)具有高電導(dǎo),相當(dāng)于從電極伸出的導(dǎo)電棒,它保證在其端部有高的場強(qiáng),因此就容易形成新的流注。

負(fù)先導(dǎo)的發(fā)生也相類似,只不過這時電子流動的方向是從電極到流注頭部。當(dāng)由電子崩發(fā)展為新流注時,電子進(jìn)入間隙深處,即在沒有發(fā)生電離的區(qū)域建立負(fù)空間電荷,這給先導(dǎo)的推進(jìn)帶來困難。因此,間隙的擊穿要在更高的電壓下才能發(fā)生。當(dāng)先導(dǎo)推進(jìn)到間隙深處時,其端部會出現(xiàn)許多流注,其中任何一個都可能成為先導(dǎo)繼續(xù)發(fā)展的方向。通道電離越強(qiáng)的流注,越可能成為先導(dǎo)發(fā)展的方向,但是和流注本身一樣,其方向具有偶然性,這就說明了長間隙放電,例如,雷電放電的路徑具有分支的特點。

長間隙的放電大致可分為先導(dǎo)放電和主放電兩個階段,在先導(dǎo)放電階段中,包括電子崩和流注的形成及發(fā)展過程。不太長間隙的放電沒有先導(dǎo)放電階段,只分為電子崩、流注和主放電階段。

當(dāng)先導(dǎo)到達(dá)相對電極時,主放電過程就開始了。不論是正先導(dǎo)還是負(fù)先導(dǎo),當(dāng)通道頭部發(fā)展到接近對面電極時,在剩余的這一小段間隙中場強(qiáng)劇增,會有十分強(qiáng)烈的放電過程,這個過程將沿著先導(dǎo)通道以一定速度向反方向擴(kuò)展到棒極,同時中和先導(dǎo)通道中多余的空間電荷,這個過程稱為主放電過程。主放電過程使貫穿兩極間的通道最終形成溫度很高、電導(dǎo)很大、軸向場強(qiáng)很小的等離子體火花通道(若電源功率足夠,則轉(zhuǎn)為電弧通),從而使間隙失去了絕緣性能,氣隙的擊穿就完成了。主放電階段的放電發(fā)展速度很快,可達(dá)109cm/s

3.稍不均勻電場中的極性效應(yīng)

稍不均勻電場意味著電場還比較均勻,高場強(qiáng)區(qū)電子電離系數(shù)α達(dá)到足夠數(shù)值時,間象中很大一部分區(qū)域中α也達(dá)到相當(dāng)值,起始電子崩在強(qiáng)場區(qū)發(fā)展起來,經(jīng)過部分問隙距高后形成流注。流注一經(jīng)產(chǎn)生,隨即發(fā)展至貫通整個間隙,導(dǎo)致擊穿。

在高電壓工程中常用的球-球間隙、同軸圓柱間隙等都屬于稍不均勻電場。稍不均勻電場問隙的放電特點和均勻電場相似,氣隙實現(xiàn)自持放電的條件就是氣隙的擊穿條件,也就是說、稍不均勻電場直到擊穿為止不發(fā)生電暈。在直流電壓作用下的擊穿電壓和工頻交流下的擊穿電正幅值以50%沖擊擊穿電壓都相同,擊穿電壓的分散性也不大,這也和均勻電場放電特點一致。

稍不均勻電場也有一定的極性效應(yīng),但不很明顯。高場強(qiáng)電極為正極性時擊穿電壓稍高,為負(fù)極性時擊穿電壓稍低。這是因為在負(fù)極性下電暈易發(fā)生,而稍不均勻場中的電暈很不穩(wěn)定。這時的電暈起始電壓就是很接近于問隙擊穿電壓。從擊穿電壓的特點來看,稍不均勻場的極性效應(yīng)與極不均勻場的極件效應(yīng)結(jié)果相反。在稍不均勻場中,高場強(qiáng)電極為正電極時,問隙擊穿電壓比高場強(qiáng)電極為負(fù)時稍高;高場強(qiáng)電極為負(fù)電極時,間隙擊穿電壓稍低。而在極不均勻場中卻是高場強(qiáng)電極為正時,間隙擊穿電壓低;高場強(qiáng)電極為負(fù)時,問隙擊穿電壓要顯著高于高場強(qiáng)電極為正時的情況。

 

北京中航時代儀器設(shè)備有限公司
  • 聯(lián)系人:石磊
  • 地址:北京市房山區(qū)經(jīng)濟(jì)技術(shù)開發(fā)區(qū)1號
  • 郵箱:zhsdyq@163.com
  • 傳真:86-010-80224846
關(guān)注我們

歡迎您關(guān)注我們的微信公眾號了解更多信息

掃一掃
關(guān)注我們
版權(quán)所有 © 2026 北京中航時代儀器設(shè)備有限公司 All Rights Reserved    備案號:京ICP備14029093號-1    sitemap.xml
管理登陸    技術(shù)支持:化工儀器網(wǎng)    
最新福利视频一区| 欧美熟妇日本熟女| 93精品视频在线| 国产午夜在线一区二区三区| 亚洲欧美国产色逼视频| 亚洲欧美另类国产人妻| 日本一二三区不卡ww| 亚洲人妻视频免费| 天天摸天天草天天爽| 少妇人妻一区二区视频| 玩弄美艳馊子双飞高潮喷水| 久久国产精品亚洲麻豆v| 亚洲人妻一区二区91九色| 亚洲国产高清国产| 日本特一级免费大片| 日本 一区二区 在线| 来个一级黄片看看| 啪啪啪在线播放网站| 熟女少妇一区二区亚洲| 99久久久久久久久婷婷精品国产| 欧美激情视频在线全球共享| 美女把逼扒开让男人捅| 午夜精品久久久久久不卡av| 亚洲欧美卡一卡二| 怎样看黄色小视频| 国产午夜在线一区二区三区| 伊人久久精品亚洲av| 福利精品视频在线观看| 国产精品私密裸模视频| 中文字幕av资源在线观看| 青青青青青国产在线视频| 黑人无码AV黑人天堂无码AV| 国产啊啊在线播放| 国产三级视频在线播放| 国产高清国内精品福利免费| 美女被人操出白浆| 国产成人无码www免费| 天天干天天闹天天舔天天透逼| 网红美女主播av| 亚洲综合欧美日韩| 日本亚洲欧美日韩精品| 女人做爰高潮免费播放网站| 18成人久久久久久无码mv| 丝袜美腿中文字幕在线观看| 久久久午夜福利专区| 日韩精品久久一区二区三区人妻| 亚洲精品在线黄色av| 日韩情色中文字幕| 亚洲视频一区自拍| 欲求不满人妻少妇| 黄色十大禁止软件| 老熟女五十路乱子中出交尾一区 | 岛国毛片午夜久久| 亚洲第一码久久播放| 免费特黄黄色大片| 黄色成人免费大片| 五月婷婷丁香激情对白一区二区| 日本一区二区三区人妻| 日韩av在线综合| 国产又猛又粗又硬又黄视频| 宅男午夜在线播放| 一区二区黄片视频| 特粗特长大黑掉猛操逼视频| 人妻少妇一区二区| 国产午夜在线一区二区三区 | 黄色免费在线播放网站| 国产三级自拍一区| 后入欧美美女在线视频| 国产精品视频看看| 丝袜人妻熟女网站| 色哟哟丨小丨国产专区| 日本邪恶福利网站在线观看| 亚洲丰满熟妇xxxx色| 黄色国产精品免费推荐| 精品一区二区三区中文字幕老牛 | 特粗特长大黑掉猛操逼视频| 欧美一区二区三区在线激情| 在线视频成人一区二区| 中文字幕网址大全| 青青青青青青青视频在线| 成人午夜电影中文字幕| 久久久久久久久久久免费看| 亚洲欧美自拍第页| 轮奸在线一区一区三区| 天堂av在线成人免费| 久久久久久久久久久免费看| 中文有码在线视频观看| 99国产精品99精品国产| 日本亚洲欧美日韩精品| 日韩欧美精品久久久久久久久| 老鸭窝在线视频观看网站| 热码av在线中文字幕| 熟女少妇一区二区亚洲| 亚洲最新黄色av网站| 日本精品 a在线观看| 99视频精品免费播放| 91新人kinolu在线播放| 欧美一区二区三区在线激情| 日本不卡一区二区高清视频 | 天天爱天天看天天摸| 欧美牲交a欧美在线欧美精品| 高跟丝袜av在线一区二区三区| 成人h网站秘在线观看| 99久久精品氩 91久久久| 青青操91在线视频免费| 国产精品国产三级国产三级| 亚洲人妻一区二区91九色| 青青草官网视频在线观看| 苏联大鸡巴插在女人阴道里 | ae老司机精品福利视频| 久草青青在线播放视频| 亚洲中文字幕一区二区视频| 苏联大鸡巴插在女人阴道里| 99久久亚洲精品日本无| 日日操夜夜嗷嗷叫| 日韩av精品国产av精品| 黑人侵犯日本人妻| 天天操操操操操操操| 欧美亚洲另类网址在线| 在线观看一卡二卡| 午夜精品人妻一区二区| 国产极品激情高潮| 成人 在线 视频| 太骚了就想被大鸡巴操视频| 阿v国产在线观看| 同学人妻少妇系列| 蜜臀av在线一区二区三区| 亚洲精品在线黄色av| 99国产免费自拍视频| 超碰狠狠干狠狠操| 在线视频国产激情啦啦啦| 深夜小视频在线观看免费| 毛片av在线网址| 亚洲自拍卡1卡2卡3卡4| 在线观看av裸体| 免费人妻在线视频观看| 九七国产免费观看视频| 天天日天天爱天天操天天干| 亚洲免费一区二区三区四区| 久久久久久久精品成人新网站| 国产 丝袜 精品| 九色porny人妻91| 在线无码精品国产自在久国产| 亚洲欧美成人激情四射| 国产亚洲天堂自拍| 最新地址亚洲天堂| 91国内精品久久久久精品一区| 天天摸天天草天天爽| 亚洲人妻一区二区三区视频| 元码中文字幕一区二区| xxxx日本熟妇| 国产日韩欧美911在线观看| 欧洲亚洲自拍偷拍| 成年片色大黄全免费网站久久| 亚洲福利蘑菇视频| 污污亚洲国产黄色第一x| 国语版三级黄色片| 激情小说人妻欧美| 久久网国产精品色婷婷免费| 国产精品视频看看| 亚洲超碰福利在线| 射精后第二天乏力| 亚洲欧美自拍第页| 久久免费精品国产2020| 免费特黄黄色大片| 欧美日韩国产精品爽爽| 伊人网在线观看免费视频| av天堂亚洲首页| 人妻少妇熟女系列中文字幕| 日韩亚洲av专区| 自拍偷拍日韩国产| 亚洲国产高清国产| 久久久午夜福利专区| 精品视频国内精品视频,在线| 午夜精品一二三区| 国产亚洲天堂欧美| 91蜜桃在线免费视频| 日本aⅴ毛片成人| 亚洲精品在线观看aa| 日本高清高清高色| 亚洲美女自拍偷拍| 人人妻人人爽人人妻人人夜夜爱| 国产午夜激情一区| 美女视频美女视频网站| 国产av日韩av一区| 看看免费的黄色性生活动作片| 国产午夜大人视频在线观看| 国产性感午夜天堂av| 女人av一区二区三区| 国产成a免费在线播放| av青青草三级在线观看| 日本一区二区三区人妻| 91久久视频在线播放| 美女视频美女视频网站| 一级av电影在线播放| 成人av手机免费在线观看| 午夜国产精品自取自拍| 成人麻豆日韩在无码视频| 久久五十路老妇丰满人妻精品| 亚洲久久久久久久蜜桃视频| 97免费视频资源总站| 最新中文字幕免费在线视频| 国产自拍av在线| 免费特黄黄色大片| 亚洲中文字幕人妻在线| 999久久久婷婷婷久久久| 网友自拍 在线视频| 国产精品高潮呻吟av92| 成人黄色高清在线| 国产chinese男男激情| 日本六十路人妻熟女| 日本中文高清字幕网站| 青青草原 华人在线| 亚洲熟女综合色区一区二区三区| 国产精品久久a|| 亚洲欧美国产色逼视频| 国产成a免费在线播放| 青青操视频在线免费播放| 成人精品自拍视频免费看| 亚洲欧美成人精品久久| 下面好紧好舒服日批免费视频| 亚洲欧美另类在线中文字幕| x8x8成人免费| 亚洲欧美熟女视频免费| 自拍偷拍在线欧美| 91free香蕉久久蜜桃| 九九热在线观看视频99| 中文有码在线视频观看| 欧美国产精品久久久乱码| 欧洲日本亚洲在线视频| 国产日产欧产美韩系列三级| 亚洲精品成人av在线| 资源一区二区三区在线播放| 18禁止观看强奷网叫床声| 成人精品自拍视频免费看| 久久人妻在线视频| 日韩av精品国产av精品| 国产chinese男男激情| 欧美熟妇日本熟女| 日本免费高清一区在线| 粉嫩高清一区二区三区| 中国av蜜臀一区二区三区| 国产av日韩av一区| 成人午夜av无在线毛片| 欧美手机在线不卡视频| 国产初次破初视频| 亚洲欧美熟女视频免费| 99精品视频maifei| 免费在线看黄色的网站| 女人av一区二区三区| 亚洲自拍偷拍在线视频| 国语版三级黄色片| 熟女中文字幕丝袜日韩| 肏死我的小骚逼视频| 日本特黄夫妻生活片| 国产AV又粗又大果冻传媒| 女人被爽的高潮视频全黄| 一区二区三区四区中文字幕| 在线免费观看视频国产| 色悠久久久久久久综合网| 视频一区二区三区久久| 激情婷婷中文字幕| 一区二区三区四区亚洲区| 91福利免费观看网站| 99久久精品国产亚洲av| 超碰97资源超碰| 三级三级久久三级三级| 日本精品 a在线观看| 亚洲蜜桃精品视频| 后入欧美美女在线视频| 黄色国产精品视频三十分钟| www在线观看视频污| 男女真人操逼视频在线观看| 不卡深夜在线视频| 99久久国产精品免费| 最新福利视频一区| 视频一区二区三区久久| 最新国产成人区视频| 亚洲精品成a在线观看| 日韩美av一区二区三区| 久久精品av成人| 人妻互换一二三视频| 免费在线看黄色的网站| 少妇久久免费精品| 丝袜美腿中文字幕在线观看| 小泽玛利亚二区三区在线| 巨乳美女av在线| 亚洲jlzzjizz少妇女| 成人网片在线播放| 在线观看欧美不卡| 人妻少妇一区二区| 亚洲 精品 人妻 在线| 国产69精品久久久久99尤| 伊人网在线观看免费视频| 午夜精品久久成人| 超超碰超碰在线观看| 日本中文高清字幕网站| 人与禽动zoz0性伦a| 欧美午夜一区二区在线| 98超级在线免费视频| 美女直播被艹视频| 91久久综合亚洲天堂| 91丝袜美腿精品一区二区在线观| 在线免费观看调教| x8x8成人免费| 激情综合胖子射精| 欧美亚洲人妻日韩中文字幕| 日韩熟女一区二区免费| 美女被内设黄色视频免费看| 国产第一区美女福利视频| 免费a级黄色av网站| 国产精品jizz在线观看| 嗯啊 不要 奶子| 人妻成人免费在线视频| 秋霞国产午夜精品免费视频| 亚洲欧美国产色逼视频| 久久久乱码精品一区二区三区| 欧美成人激情网站| 亚洲熟女人妻丝袜| 亚洲日本一区二区三区久久久| 大屁股骚逼操比视频软件| 欧美日韩精品综合国产| 国产精品国产三级国产三级| 91人人综合精品视频天天看| 森泽佳奈中文字幕在线观看| 国产性色在线视频网站| 天天日天天爱天天操天天干| 久久丝袜美腿诱惑| 午夜一区二区三区四区0| 一区二区二区在线播放| 变态女人的骚逼亚洲视频| 亚洲人成网线在线播放va| 四虎884aa成人精品最新| 亚洲美女人妻av| 中文字幕av四区| 激情综合胖子射精| 79久久久久久久69| 东京干手机福利视频| av熟女乱入一区二区| 99r在线播放精品视频| 天堂av在线成人免费| 天天日天天爱天天擦| 婷婷久久视频在线播放| 国产日日躁夜夜躁| 人妻熟女一区二区三区a| 国产人久久久伊人av| 亚洲 国产 制服 丝袜 字幕| 旗袍丝袜美腿美女图片| 亚洲精品成a在线观看| 内射一区二区三区四区五区| 好了AV四色综合无码久久| 中文字幕伊人久久在线| 久久综合狠狠综合| 国产成人无码www免费| 九色91国产网站视频| 啪啪亚洲伊人啪啪啪啪啪欧美| 久久久噜呀噜噜久久免| 日韩精品蜜桃在线第一视频| 国产自拍av资源| 国产初次破初视频| 亚洲欧美综合久久久久| 国产视频一区二区三区四区| 99视频精品免费播放| 中文字幕乱码一区二区欧美| 偷拍自拍 亚洲视频| 97公开成人免费视频| 日韩精品蜜桃在线第一视频| 青青青小草青青在线播放视频| xxxx日本熟妇| 精品人妻一区二区三区在线视频| 国产伦奸在线播放免费| 中文字幕精品亚洲字幕网| 午夜色大片免费看| 蜜桃视频综合一区| 成人国产专区在线观看| 999久久久婷婷婷久久久| 自拍偷拍在线欧美| 亚洲素人熟女久久久| 亚洲国产精品白浆| 天美传媒有限公司官网首页| 99久久亚洲精品日本无| 国产日韩欧美懂色| 日韩中文高清在线| 中无码人妻丰满熟妇啪啪| 亚洲精品人妻中文字幕| 亚洲蜜桃免费在线| 温琪少妇一区二区三区| bbbb在线免费av| 偷拍自拍 亚洲视频| 日本人体艺术在线| 国产精品伦理在线观看| 青青草原 华人在线| 国产另类在线视频| 自拍视频在线观看1久网| 亚洲情色精品av| 超碰97在线观看五月天| 免费观看av成人| 太骚了就想被大鸡巴操视频| 亚洲熟女综合色区一区二区三区| 这里只有精品视频这里| 日本人体艺术在线| 偷拍亚洲丝袜熟女| 同学人妻少妇系列| 九色成人自拍视频| 国产精品中文字幕av| 黑丝美女后入国产在线观看| 九色91国产网站视频| 亚洲资源成人在线| 国产日产一区二区三区久久久久久| 98精品视频在线播放| 成年在线免费看视频| 别插了受不了快拔出来视频| 欧美日韩国产精品爽爽| 人妻性奴隶精品一区91| 超碰资源总站97| 亚洲天天狠狠操夜夜狠狠操| 国产av有码中文| 久久久久9999精品99久久 | 亚洲蜜桃精品视频| 亚洲免费av在线观看一区| 美女把逼扒开让男人捅| 在线无码精品国产自在久国产| 亚洲日产精品一二三四| haose我爱av| 亚洲精品成a在线观看| 国产精品中文字幕av| 成人精品自拍视频免费看| 美女直播被艹视频| 高潮喷水少妇av| 在线中文字幕 你懂的| 久久五十路老妇丰满人妻精品| 亚洲男女一区二区三区| 99久久精品国产亚洲av| 亚洲欧美另类亚洲欧美| 免费精产国品一二三| 一区二区三区免费在线播放| 成人午夜电影中文字幕| 黄色大片男人操女人逼| 女人被爽的高潮视频全黄| 亚洲自拍卡1卡2卡3卡4| 最新免费黄色av网址| 中文有码视频在线免费观看| 亚洲中文久久久久久精品| 在线观看国产精选| 欧美亚洲另类网址在线| 可以在线免费直接看的av| 欧美成人激情网站| 日本一区视频二区| 国产精品久久a|| 大屁股骚逼操比视频软件| 91久久国产香蕉| 丝袜亚洲国产中文| 人妻少妇免费视视频一区二区| 亚洲免费在线观看的时候| 在线免费播放91| 美女直播被艹视频| 亚洲av在线观看在线观看 | 成人 中文字幕在线| h动漫精品一区二区三区免费| 中文字幕人妻丝袜久久| 日本精品一区二区三区试看| 一区二区碰超熟女在线| 91久久综合亚洲天堂| 苏联大鸡巴插在女人阴道里 | 国产极品激情高潮| 美女直播三级视频| 亚洲精品久久久久久首页| 在线av资源网站| 欧美激情在线网站亚洲一区| 在线观看黄色成人av| 亚洲熟女综合色区一区二区三区| 国产自拍视频免费播放| 一区二区三区四区中文字幕 | 成人麻豆日韩在无码视频| 免费人妻在线视频观看| 瑟瑟的视频在线免费观看| 中文字幕av资源在线观看| 黄色大片男人操女人逼| 热码av在线中文字幕| 青青草福利视频在线观看| 麻豆精品视频网站在线观看| 最新av网址网站| 超碰97在线观看五月天| 亚洲欧美卡一卡二| 久久精品噜噜av成人| 国产第一区美女福利视频| 日韩一级毛一欧美一级| 在线亚洲av网址| 中文字幕亚洲精品人妻日| 91久久国产香蕉| 国产精品小视频啊啊啊| 大肉大捧一进一出视频出呀| 亚洲蜜桃免费在线| 一道久dvd在线观看| 欧美成人激情一级精品| 香港一级特黄大片| 亚洲处女破处流血视频在线观看| 在线免费播放91| 女人被爽的高潮视频全黄| 久久久99久久久国产| 97超级碰碰视频在线| 亚洲人妻一区二区三区视频| 87欧美福利在线视频| 视频一区二区免费观看| 美女第一直播平台| 亚洲另类丝袜美女| 清纯唯美亚洲另类| 91porny在线人妻| 风流老熟女一区二区三区av| 亚洲精品视频自拍成人| 欧美在线观看一区二区三区国产| 91free香蕉久久蜜桃| 超碰在线观看视频91| 午夜中文av在线| 日韩黄片免费点击就看| 极品大奶子福利在线观看| 国产一级精品特黄| 91久久久久区一区二| 九色91国产网站视频| 国内外美女激情免费观看视频| 人妻精品久久久久中文字幕青草| 日本少妇xxx视频| 亚洲av乱码国产一区二区| 一区二区三区免费黄片| 欧美三级日韩视频| 久久精品av成人| 免费国产精品第一黄色| 超碰资源总站97| 国语版三级黄色片| 一区二区三区精品在线| 93精品视频在线| 国产精品视频播放网址| 久久伊人国产超碰| 人妻少妇一区二区| 999久久久婷婷婷久久久| 成人精品自拍视频免费看| 日韩成人美女视频| 麻豆tv网站观看| 尤物av蜜臀av| 麻豆tv网站观看| 日本不卡一区二区高清视频| 亚洲蜜桃精品视频| 国产av在线精品| 欧美成人兔费视频| 日韩av人妻精品| 无套后入蜜桃屁股在线观看 | 巨乳美女av在线| 国产av在线精品| 97免费视频资源总站| 偷拍自拍 亚洲视频| 日韩美女综合中文字幕pp | 午夜色大片免费看| 99久久亚洲精品日本无| 另类亚洲日本欧美| 风流老熟女一区二区三区av | 国产亭亭91九色| 人妻一区日韩二区三区四区| 91久久综合精品久久久综合| 欧美激情视频在线全球共享| 最新av网址网站| 免费观看av成人| 国产日产一区二区三区久久久久久| 粉嫩高清一区二区三区| 逼喷水在线免费观看2| 久久久99精品免费观看乱色| 久久伊人国产超碰| 98超级在线免费视频| 亚洲综合欧美日韩| 国产精品小视频啊啊啊| 桥本有菜av精品免费播放| 阴茎进1入阴道视频| 熟女人妻一区二区三区在线| 少妇人妻一区二区视频| 精品精品免费免费免费| 熟女少妇日韩亚洲| 视频一区中文字幕| 亚洲第一区2区3区在线观看| 国产中文字幕2020| 伊人久久中文字幕综合观看| 欧美美女久域视频网站| 4虎视频成人在线| 欧美精品在线看片一区二区| 国偷av国产av自拍| 一区二区香蕉久久| 国产精品99久久99精| 国产精品自拍偷拍中文字幕| 亚洲精品成人av在线| 92顶级少妇午夜免费福利| 欧美一级二级三级黄片| 国偷av国产av自拍| 亚洲欧美美乳在线| 中文字幕人妻丝袜久久| 国产色视频图片在线观看| 福利精品视频在线观看| 熟女人妻在线视频观看| 大屁股骚逼操比视频软件| 国产美女在线观看免费观看| 欧美色999一区二区三区| 久久久久久久久久久63| 爆操熟女视频在线观看| 桥本有菜av精品免费播放| 熟女不卡系列一区二区| 成人av手机免费在线观看| 大肉大捧一进一出视频出呀| 亚洲av黄色在线播放| 98超级在线免费视频| 亚洲另类丝袜美女| 久久真人黄色片免费观看| 国产精品高潮av大全| 中国丰满人妻av| 91福利免费观看网站| 久久精品国产一区二区三区不卡| 色偷偷男人天堂亚洲天堂| 久久看视频这里有精品| 日本色综合图片专区| 久久成人三级一区二区三区| 91久久综合精品久久久综合| 人妻熟女免费在线视频| 久久免费精品国产2020| 99久久国产精品免费| 亚洲欧美美乳在线| 欧美成人激情网站| 男生和女生日逼视频观看| 伊人网在线观看免费视频| 麻豆国产精彩对白| 欧美精品在线看片一区二区| 九色porny9l自拍| 成人在线视频播放一区| 亚洲视频在线观看资源| 婷婷久久视频在线播放| 国偷av国产av自拍| 三级三级久久三级三级| 2023午夜精品福利| 久碰久摸久看好男人视频| 国产一区熟女在线视频| 宅男午夜在线播放| 伊人久久中文字幕综合观看| 亚洲欧美最大色精品网站免费观看| 旗袍丝袜美腿美女图片| 大鸡巴插小逼里面爽的呻吟视频| 毛片av在线网址| h动漫精品一区二区三区免费| 青青久草视频在线99| 人妻性奴隶精品一区91| 一级男女爱爱视频黄免费试看| 自拍偷拍视频第十页| 狂野少女免费完整版中文| 午夜色大片免费看| 中国人妻性感在线| 2021国产麻豆剧传媒| 亚洲国产欧美蜜臀av| 91超频在线观看视频| 日韩欧美人妻中文字幕一区二区| 91久久久久区一区二| 中文字幕在线视频第一页一区| 亚洲国产精品青青网| 蜜桃精品一区二区在线| 超碰狠狠干狠狠操| 天天摸天天玩天天操| 日本亚洲欧美日韩精品| 国产亚洲精品人妻| 啪啪啪在线播放网站| 男生操女生的b在线观看| 日韩国产精品专区一区性色 | 亚洲天堂av五月婷婷| 一区二区三区免费在线播放| 亚洲国产精品青青网| 天天插天天爱天天透| 国产不卡的av网站在线观看| 亚洲熟女人妻丝袜| 中文 日韩 人妻 丝袜| 后入欧美美女在线视频| 在线免费观看调教| 精品成人18国产av| 国产高清国内精品福利免费| 午夜国产视频激情戏| 麻豆tv网站观看| 欧美另类丝袜变态二区| 国产在线精品毛片| 国内外美女激情免费观看视频| 日本人体艺术在线| 免费国产一级av大片| 最新中文字幕免费在线视频| 国产精品欧美一级免费| 成人精品视频视频| av少妇一区二区三区| 啪啪啪在线播放网站| 国产三级精品大乳人妇| 日韩熟女在线视频| 亚洲欧美另类是图| 亚洲无线观看国产精品| 97超级碰碰视频在线| 日本六十路人妻熟女| 在线成人资源播放| 人妻久久久久一区二区三区| 久久精品国产av成人| 最新日本一区二区三区| 任我看视频在线观看| 久久精彩视频98| 在线视频国产免费观看| 精品亚洲偷拍自拍| 日韩中文字幕久久精品| 人妻 精品一区二区三区| 女人的天堂av在线观看| 亚洲一区二区av偷偷| 美女被草在线网站| 亚洲欧美另类卡通| 亚洲av国产av麻豆| 粉嫩高清一区二区三区| 亚洲午夜福利短视频| 久久精品国产av成人| 老鸭窝在线观看免费视频| 深夜小视频在线观看免费| 999久久久国产精品免费| 精品视频国产激情| 国产中文字幕2020| 国产偷拍自拍色图| 国产精品伦理在线观看| 人人爽日日摸av| 青青免费av观看| 另类专区亚洲小说都市激情| 亚洲精品在线黄色av| 亚洲欧美一区二区三区三蜜臀| 伊人久久精品亚洲av| 午夜色大片免费看| 夏洛特的烦恼在线播放高清| 97超级碰碰视频在线| 亚洲制服丝袜在线诱惑一区| 综合图区 亚洲 偷自拍| 亚洲一区二区三区在线观看91| 亚洲欧美另类亚洲欧美| 亚洲伦理男人的天堂| 亚洲中文字幕一区二区视频| 国产精品高潮av大全| 免费欧洲毛片a级视频无风险| 大鸡巴插小逼里面爽的呻吟视频 | 国产一区熟女在线视频| 国产av一卡二卡三卡四卡| 亚洲视频一区中文字幕| 五十路昭和熟女人妻一区二区| 91调教免费视频| 国产69精品久久久久99尤| 亚洲素人熟女久久久| 深夜在线播放免费视频| 日韩中文字幕久久精品| 精品一区二区三区四区免费视频| 人妻久久搭讪中出电影| 日日本大香蕉日日本大香蕉| 亚洲视频一区自拍| 120分钟激情视频| 免费观看av成人| 99久久精品99| 欧美精品久久99久久| 中文字幕av九区| 国产又猛又粗又硬又黄视频| 欧美国产精品久久久乱码| 女人的天堂av在线观看| 最新av网址网站| 在线播放日韩一区| 91精品国产综合av入口| 精品亚洲偷拍自拍| 国产亚洲天堂自拍| 国产精品99久久99精| 97免费视频资源总站| 亚洲18禁在线播放| 欧美一区二区三区在线激情| 国产精品久久精品视频| 国产地址在线观看一区| av熟女乱入一区二区| 天天澡天天添天天摸| 九色91精品视频在线| 中文一区二区三区色| 成人午夜嘿嘿视频| 玩弄美艳馊子双飞高潮喷水| 精彩视频午夜在线免费观看| 中文字幕av有码| 美女把逼扒开让男人捅| 日本免费高清一区在线| 女人av一区二区三区| 国产av在线精品| 这里只有精品视频这里| 欧美午夜一级欧美精品| 狂野少女免费完整版中文| 欧美精品视频不卡| 强d无乱码中文字幕免费| 人摸人人人澡人人超碰手机版| 中文字幕精品亚洲字幕网| 最新av网址网站| 91国内精品久久久久精品一区| 欧美午夜一级欧美精品| 一级特黄在线观看| 午夜精品久久久久久不卡av| 久久久午夜福利专区| 99视频精品免费播放| 人妻少妇久久久久久97人妻| 饥渴富婆一区二区| 亚洲另类丝袜美女| 成人精品自拍视频免费看| xxxx日本熟妇| 91福利国产福利| 亚洲自拍卡1卡2卡3卡4| 国产第一区美女福利视频| 超超碰超碰在线观看| 日本丰满大奶熟女一区二区| 在线观看小视频亚洲| 欧美vieox另类极品| 国产无套激情视频| 日日躁狠狠躁av| 中文字幕在线视频第一页一区| 久久久久久久精品成人新网站| 精品一区二区三区中文字幕老牛 | 欧美 亚洲 丝袜另类| 日韩女优av电影一区二区| 超碰在线观看视频91| 亚洲精品久久久久久首页| 在线亚洲精品免费| 日韩av字幕在线| 亚洲天天狠狠操夜夜狠狠操| 男生和女生日逼视频观看| 2021国产麻豆剧传媒| 激情小说亚洲另类| 欧美a级视频一区二区三区| 国产色视频图片在线观看| 美女直播三级视频| 东京干手机福利视频| 国产中文字幕在线播放| 青青操视频在线免费播放| 一区二区二区在线播放| 日韩熟女一区二区免费| 成人在线视频播放一区| 美女嫩模福利在线| 欧美精品在线看片一区二区| 久久综合金8天国| 丝袜美腿福利在线观看| 欧美 亚洲 丝袜另类| 精品一区二区三区中文字幕老牛| 别插了受不了快拔出来视频| 老鸭窝在线视频狂综合| 黄色成人免费大片| 国产AV又粗又大果冻传媒| 91久久久久区一区二| 国产三级内射在线| www在线观看视频污| 欧美一区综合视频| 男女真人操逼视频在线观看| 日韩人妻三区视频| 黑色丝袜美美女被狂躁av| 网友自拍视频在线| 欧美vieox另类极品| 99视频精品免费播放| 99精品高清免费在线视频| 人妻久久精品夜夜爽一区二区| 在线av资源网站| 免费深夜小视频嗯嗯嗯嗯| 久久91久久精品久久| 久久观看视频在线| 亚洲ⅴa欧美va韩国va清高| 美女视频美女视频网站| 欧美 亚洲 丝袜另类| 国产中文字幕2020| 亚洲在线国产一区| 美女被人操出白浆| 日韩亚洲av专区| 99精品视频maifei| 人妻性奴隶精品一区91| 亚洲情色一区二区在线观看| 国模精品久久久久性色av| 精品视频一区二区二区三区| 人人爽日日摸av| 18中文字幕在线| 久久久噜呀噜噜久久免| 亚洲国产精品青青网| 女人做爰高潮免费播放网站| 巨乳美乳av在线| 国产91单男3p在线观看| 男人插进女人逼里视频| 99er精品在线播放| 资源一区二区三区在线播放| 欧美人妻中文字幕天天爽| 森泽佳奈中文字幕在线观看| 人妻互换一二三视频| 超碰狠狠干狠狠操| 中文字幕av四区| 3d动漫女人被男人爆操嫩穴| 1024久久国产麻豆| 青青草av在线观看入口| 极品美女福利视频在线观看| 美女嫩模福利在线| 想要视频在线观看| 成人午夜亚洲av| av探花在线播放| 日本一区视频二区| 欧美情色亚洲情色| 国产又猛又粗又硬又黄视频 | 亚洲 国产 制服 丝袜 字幕| 亚洲激情人妻日韩欧美| 国产成人无码www免费| 人妻少妇a v中文字幕| 太骚了就想被大鸡巴操视频| 美女网站午夜麻豆一区| 伊人久久中文字幕综合观看| 国产在线观看你懂| 午夜精品久久久久久久免费| 国产视频一区二区三区四区| 成人激情在线播放| 919视频app| 少妇人妻一区二区视频| 成人在线视频播放一区| 欧美日本高清视频99| av熟女乱入一区二区| 国产av一卡二卡三卡四卡| h动漫精品一区二区三区免费| 少妇久久免费精品| 亚洲国产精品卡一卡二| 超碰资源总站97| 国产精品久久a|| 天天插天天爱天天透| 国产三级精品大乳人妇| 全国亚洲最大色图视频网| 国产久久精品福利| 日本高清视频ww| 成人午夜嘿嘿视频| 999国产精品亚洲| 天天色天天碰天天干| 亚洲天堂av五月婷婷| 欧美精品午夜一二三区| 草草草网站在线观看av| 另类专区亚洲小说都市激情| 亚洲国产精品卡一卡二| 亚洲第一码久久播放| 极品美女在线高潮| 精品成人18国产av| 最新国产成人区视频| 国产中文字幕在线播放| 女优亚洲一区二区| 77777亚洲熟妇av在线| 亚洲熟女综合色一区二区三区| 哪有免费av毛片| 亚洲69xxxxx| 国产av一卡二卡三卡四卡| 最近最新中文字幕日a精品人妻| 亚洲丝袜制服日韩熟女| 国产三级内射在线| 欧美日韩精品综合国产| 在线免费播放91| 亚洲素人熟女久久久| 欧美激情五月网址| 66色吧超碰97人人做人人爱| 98超级在线免费视频| 99热网址在线观看一区| 18成人久久久久久无码mv| 亚洲熟女综合色一区二区三区| 日韩国产精品专区一区性色| 大香蕉手机伦理在线| 国产美女在线观看免费观看| 中文国产亚洲精品| 日韩人妻系列一区二区| 日本久久中文字幕日韩| 成人亚洲AV一片内射在线观看| 强d无乱码中文字幕免费| 99国产精品国产免费| 加勒比一区二区在线观看| 日本亚洲欧美日韩精品| 亚洲av欧av日韩av| 丰满少妇午夜福利视频| 同学人妻少妇系列| 成人在线视频播放一区| 欧美激情视频在线全球共享| 国产中文字幕2020| 黄色十大禁止软件| 亚洲天天狠狠操夜夜狠狠操| 精品国产高清福利| 欧美一区二区三区伦理片| 亚洲成年人黄色激情化| 中文有码视频在线免费观看| 91福利电影在线观看| xxxx日本熟妇| 日日操夜夜嗷嗷叫| x8x8成人免费| 在线成人资源播放| 成人午夜嘿嘿视频| 日韩av字幕在线| 极品av黑丝美女插插插入| 亚洲精品免费日韩| 国产剧情av巨作精品原创| 欧美色欧美亚洲另类在线影| 黄片视频免费网站在线观看| 亚洲欧美国产色逼视频| 久久久99久久久国产| 亚洲精品在线黄色av| 千人斩av一二三区亚洲| 青青久草视频在线99| 熟妇熟女乱综合在线| 人妻少妇a v中文字幕| haose我爱av| 一级特黄在线观看| 中文国产亚洲精品| 美女嫩模福利在线| 啪啪亚洲伊人啪啪啪啪啪欧美 | 国产 丝袜 精品| 日本一区二区三区人妻| 日韩女优av电影一区二区| 亚洲精品女久久久久| 一区二区三区中文字幕在线| 亚洲欧美日韩综合人妻| 丝袜美腿中文字幕在线观看| 久久精品国产av成人| 自拍偷拍在线欧美| 91主播福利在线| 中文字幕在线视频第一页一区| 蜜桃在线播放观看| 人妻成人免费在线视频| 日本一区二区精品在线 | 97在线超级碰碰视频| 欧美精品视频不卡| 阿v国产在线观看| 视频免费在线播放11| 国产又猛又粗又硬又黄视频| 青青草福利视频在线观看| 中文精品福利视频| 人妻少妇一区二区| 亚洲18禁在线播放| 国语版三级黄色片| 精品高潮久久久久9999 | 亚洲欧美中文国产av2019| 在线中文字幕 你懂的| 日韩av精品国产av精品| 黄色国产精品免费推荐| 青青青青青青青视频在线| 国产久久精品福利| 人妻少妇熟女系列中文字幕| 国产放荡av国产精品| 亚洲视频一区自拍| 好了AV四色综合无码久久| 欧美一级二级三级黄片| 精品精品免费免费免费 | 爆操熟女视频在线观看| 大学生免费一级av一片| 国产精品私密裸模视频| 成年人午夜网站在线观看| 久久一级黄色大片| 久草青青在线播放视频| 天天亲天天操天天射| 清纯唯美亚洲另类| 国产精品视频一区免费| 久久久这里只有精品10| 国产经典亚洲天堂| 最新免费黄色av网址| 亚洲欧美自拍第页| 黄色十大禁止软件| 老鸭窝在线观看免费视频| 免费av网站中文| 在线中文字幕 你懂的| 日韩av精品国产av精品| 熟女人妻一区二区三区在线| 欧美成人激情一级精品| 成人 中文字幕在线| 青青操视频在线免费播放| 热99精品视频在线播放| 极品av黑丝美女插插插入| 欧美成人激情一级精品| 国产一区熟女在线视频| 久久真人黄色片免费观看| 中文字幕人妻丝袜久久| 黄色国产精品免费推荐| 国产自拍av在线| 免费深夜小视频嗯嗯嗯嗯| 人妻熟妇一区二区视频| 人妻熟女免费在线视频| 中文字幕人妻丝袜久久| 亚洲av综合伊人| 久碰久摸久看好男人视频| 成人午夜嘿嘿视频| 国产极品激情高潮| 精品三区中文字幕| 国产精品制服丝袜在线观看| 自拍视频在线观看1久网| 欧美一区二区激情免费| 国产无遮挡又爽又黄网站| 黑人侵犯日本人妻| 天天色天天操天天爽| 亚洲精品人妻熟女| 亚洲av激情av日韩av| 亚洲精品视频国产精品视频| 两个人的视频全免费观看| 日本久久久激情视频| yellow中文字幕网91在线| 日本少妇xxx视频| 亚洲精品国产欧美| 亚洲最大成人在线观看不卡| 欧美黑人精品在线免费观看视频| 网友自拍 在线视频| 美腿玉足在线一区二区| 熟女少妇一区二区亚洲| 免费深夜小视频嗯嗯嗯嗯| 青青免费av观看| 国产伦奸在线播放免费| 免费国产一级av大片| 午夜国产视频激情戏| 亚洲中文字幕一区二区视频| 射手中文网视频在线观看| 大鸡巴强奸骚逼骚叫乱伦视频| 日韩极品美女视频| 欧美成人精品高清在线下载| 网红美女主播av| 成人h网站秘在线观看| 中文字幕网址大全| 91超频在线观看视频| 欧美日韩丝袜美腿| 香港一级特黄大片| 成人在线视频播放一区| 在线 视频 日韩| 欧美精品久久99久久| 超碰97在线观看免费视频| 超碰在线97中文| 千人斩av一二三区亚洲| 亚州综合一区二区三区| 资源一区二区三区在线播放| 天堂资源中文字幕在线| 亚洲精品视频自拍成人| 77777亚洲熟妇av在线| 男女插插视频推荐| 99国产精品99精品国产| 在线视频日本综合| 清纯唯美亚洲另类| ae老司机精品福利视频| 国产三级自拍一区| 精品毛片久久久久久久久久久久| 免费在线观看的av毛片的网站| 激情小说亚洲另类| 加勒比一区二区在线观看| 最新福利视频一区| 91在线观看福利视频| 久久国产精品谷原希美| 自拍偷拍激情在线| 色网色网色网色网| 东京干手机福利视频| 国产自拍小视频在线免费观看| 免费人妻在线视频观看| 少妇床戏av蜜桃| 黄色十大禁止软件| 久久精品国产一区二区三区不卡| 美女被人操出白浆| 超碰狠狠干狠狠操| 欧美国产精品久久久乱码| 青青操91在线视频免费| 久久青青视频网站| 亚洲国产成人精品vvvvv| 天天干天天闹天天舔天天透逼| 亚洲无线观看国产精品| 亚洲一区二区三区四区美女| 热99精品视频在线播放| 久久网国产精品色婷婷免费 | 中文字幕人妻丝袜久久| 自拍亚洲欧美另类| 日韩av精品国产av精品| 91free香蕉久久蜜桃| 国产免看一级a一片成人av| 中文字幕在线观看视频中文| 国产美女在线观看免费观看| 免费在线观看的av毛片的网站| 91久久综合精品久久久综合| 森泽佳奈中文字幕在线观看| haose我爱av| 后入欧美美女在线视频| 日韩情色中文字幕| 美女网站午夜麻豆一区| 黑人无码AV黑人天堂无码AV| 一区二区三区四区中文字幕| 欧美性感比基尼视频| 无套后入蜜桃屁股在线观看| 黑丝美女后入国产在线观看| 91久久综合亚洲天堂| 亚洲美女自拍偷拍| 中文字幕人妻丝袜久久| 久久综合狠狠综合| 亚洲欧美另类是图| 久久真人黄色片免费观看| 视频免费在线播放11| 亚洲国产人成自精在线尤物| 啪啪啪在线播放网站| 九九热在线观看视频99| 夜夜操夜夜夜夜夜爽| 欧美人妻中文字幕天天爽|